Cargando…
On the ionic mechanism underlying adrenergic-cholinergic antagonism in ventricular muscle
In atrial muscle, acetylcholine (ACh) decreases the slow inward current (Isi) and increases the time-independent outward K+ current. However, in ventricular muscle, ACh produces a marked negative inotropic effect only in the presence of positive inotropic agents that elevate cyclic adenosine monopho...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1982
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215486/ https://www.ncbi.nlm.nih.gov/pubmed/7061988 |
Sumario: | In atrial muscle, acetylcholine (ACh) decreases the slow inward current (Isi) and increases the time-independent outward K+ current. However, in ventricular muscle, ACh produces a marked negative inotropic effect only in the presence of positive inotropic agents that elevate cyclic adenosine monophosphate (AMP). A two-microelectrode voltage-clamp method was used on cultured reaggregates of cells from 16--20-d-old embryonic chick ventricles to determine the effects of ACh on Isi and outward current during beta-adrenergic stimulation. Only double penetrations displaying low-resistance coupling were voltage-clamped. Cultured reaggregates are advantageous because their small size (50-- 250 microns) permits better control of membrane potential and adequate space clamp. Tetrodotoxin (10(-6) M) and a holding potential of --50 to --40 mV were used to eliminate the fast Na+ current. Depolarizing voltage steps above --40 mV caused a slow inward current to flow that was sensitive to changes in [Ca]o and was depressed by verapamil (10(- 6) M). Maximal Isi was obtained at --10 mV and the reversal potential was about +25 mV. Isoproterenol (10(-6) M) increased Isi at all clamp potentials. Subsequent addition of ACh (10(-6) M) rapidly reduced Isi to control values (before isoproterenol) without a significant effect on the net outward current measured at 300 ms. The effects of ACh were reversed by muscarinic blockade with atropine (5 X 10(-6) M). We conclude that the anti-adrenergic effects of ACh in ventricular muscle are mediated by a reduction in Ca2+ influx during excitation. |
---|