Cargando…

Diffusional water permeability of human erythrocytes and their ghosts

The diffusional water permeability of human red cells and ghosts was determined by measuring the rate of tracer efflux by means of an improved version of the continuous flow tube method, having a time resolution of 2-3 ms. At 25 degrees C, the permeability was 2.4 x 10(3) and 2.9 x 10(3) cm s-1 for...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1982
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215506/
https://www.ncbi.nlm.nih.gov/pubmed/7097244
_version_ 1782149032384135168
collection PubMed
description The diffusional water permeability of human red cells and ghosts was determined by measuring the rate of tracer efflux by means of an improved version of the continuous flow tube method, having a time resolution of 2-3 ms. At 25 degrees C, the permeability was 2.4 x 10(3) and 2.9 x 10(3) cm s-1 for red cells and ghosts, respectively. Permeability was affected by neither a change in pH from 5.5 to 9.5, nor by osmolality up to 3.3 osmol. Manganous ions at an extracellular concentration of 19 mM did not change diffusional water permeability, as recently suggested by NMR measurements. A "ground" permeability of 1 x 10(3) cm s-1 was obtained by inhibition with 1 mM of either p- chloromercuribenzoate (PCMB) or p-chloromercuribenzene sulfonate (PCMBS). Inhibition increased temperature dependence of water permeability for red cells and ghosts from 21 to 30 kJ mol-1 to 60 kJ mol-1. Although diffusional water permeability is about one order of magnitude lower than osmotic permeability, inhibition with PCMB and PCMBS, temperature dependence both before and after inhibition, and independence of osmolality showed that diffusional water permeability has qualitative features similar to those reported for osmotic permeability, which indicates that the same properties of the membrane determine both types of transport. It is suggested that the PCMB(S)- sensitive permeability above the ground permeability takes place through the intermediate phase between integral membrane proteins and their surrounding lipids.
format Text
id pubmed-2215506
institution National Center for Biotechnology Information
language English
publishDate 1982
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22155062008-04-23 Diffusional water permeability of human erythrocytes and their ghosts J Gen Physiol Articles The diffusional water permeability of human red cells and ghosts was determined by measuring the rate of tracer efflux by means of an improved version of the continuous flow tube method, having a time resolution of 2-3 ms. At 25 degrees C, the permeability was 2.4 x 10(3) and 2.9 x 10(3) cm s-1 for red cells and ghosts, respectively. Permeability was affected by neither a change in pH from 5.5 to 9.5, nor by osmolality up to 3.3 osmol. Manganous ions at an extracellular concentration of 19 mM did not change diffusional water permeability, as recently suggested by NMR measurements. A "ground" permeability of 1 x 10(3) cm s-1 was obtained by inhibition with 1 mM of either p- chloromercuribenzoate (PCMB) or p-chloromercuribenzene sulfonate (PCMBS). Inhibition increased temperature dependence of water permeability for red cells and ghosts from 21 to 30 kJ mol-1 to 60 kJ mol-1. Although diffusional water permeability is about one order of magnitude lower than osmotic permeability, inhibition with PCMB and PCMBS, temperature dependence both before and after inhibition, and independence of osmolality showed that diffusional water permeability has qualitative features similar to those reported for osmotic permeability, which indicates that the same properties of the membrane determine both types of transport. It is suggested that the PCMB(S)- sensitive permeability above the ground permeability takes place through the intermediate phase between integral membrane proteins and their surrounding lipids. The Rockefeller University Press 1982-05-01 /pmc/articles/PMC2215506/ /pubmed/7097244 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Diffusional water permeability of human erythrocytes and their ghosts
title Diffusional water permeability of human erythrocytes and their ghosts
title_full Diffusional water permeability of human erythrocytes and their ghosts
title_fullStr Diffusional water permeability of human erythrocytes and their ghosts
title_full_unstemmed Diffusional water permeability of human erythrocytes and their ghosts
title_short Diffusional water permeability of human erythrocytes and their ghosts
title_sort diffusional water permeability of human erythrocytes and their ghosts
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215506/
https://www.ncbi.nlm.nih.gov/pubmed/7097244