Cargando…
Reflection coefficient and permeability of urea and ethylene glycol in the human red cell membrane
The reflection coefficient (sigma) and permeability (P) of urea and ethylene glycol were determined by fitting the equations of Kedem and Katchalsky (1958) to the change in light scattering produced by adding a permeable solute to a red cell suspension. The measurements incorporated three important...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1983
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215567/ https://www.ncbi.nlm.nih.gov/pubmed/6842174 |
_version_ | 1782149036637159424 |
---|---|
collection | PubMed |
description | The reflection coefficient (sigma) and permeability (P) of urea and ethylene glycol were determined by fitting the equations of Kedem and Katchalsky (1958) to the change in light scattering produced by adding a permeable solute to a red cell suspension. The measurements incorporated three important modifications: (a) the injection artifact was eliminated by using echinocyte cells; (b) the use of an additional adjustable parameter (Km), the effective dissociation constant at the inner side of the membrane; (c) the light scattering is not directly proportional to cell volume (as is usually assumed) because refractive index and scattering properties of the cell depend on the intracellular permeable solute concentration. This necessitates calibrating for known changes in refractive index (by the addition of dextran) and cell volume (by varying the NaCl concentration). The best fit was for sigma = 0.95, Po = 8.3 X 10(-4) cm/s, and Km = 100 mM for urea and sigma = 1.0, Po = 3.9 X 10(-4) cm/s, and Km = 30 mM for ethylene glycol. The effects of the inhibitors copper, phloretin, p- chloromercuriphenylsulfonate, and 5,5'-dithiobis (2-nitro) benzoic acid on the urea, ethylene glycol, and water permeability were determined. The results suggest that there are three separate, independent transport systems: one for water, one for urea and related compounds, and one for ethylene glycol and glycerol. |
format | Text |
id | pubmed-2215567 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1983 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22155672008-04-23 Reflection coefficient and permeability of urea and ethylene glycol in the human red cell membrane J Gen Physiol Articles The reflection coefficient (sigma) and permeability (P) of urea and ethylene glycol were determined by fitting the equations of Kedem and Katchalsky (1958) to the change in light scattering produced by adding a permeable solute to a red cell suspension. The measurements incorporated three important modifications: (a) the injection artifact was eliminated by using echinocyte cells; (b) the use of an additional adjustable parameter (Km), the effective dissociation constant at the inner side of the membrane; (c) the light scattering is not directly proportional to cell volume (as is usually assumed) because refractive index and scattering properties of the cell depend on the intracellular permeable solute concentration. This necessitates calibrating for known changes in refractive index (by the addition of dextran) and cell volume (by varying the NaCl concentration). The best fit was for sigma = 0.95, Po = 8.3 X 10(-4) cm/s, and Km = 100 mM for urea and sigma = 1.0, Po = 3.9 X 10(-4) cm/s, and Km = 30 mM for ethylene glycol. The effects of the inhibitors copper, phloretin, p- chloromercuriphenylsulfonate, and 5,5'-dithiobis (2-nitro) benzoic acid on the urea, ethylene glycol, and water permeability were determined. The results suggest that there are three separate, independent transport systems: one for water, one for urea and related compounds, and one for ethylene glycol and glycerol. The Rockefeller University Press 1983-02-01 /pmc/articles/PMC2215567/ /pubmed/6842174 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Reflection coefficient and permeability of urea and ethylene glycol in the human red cell membrane |
title | Reflection coefficient and permeability of urea and ethylene glycol in the human red cell membrane |
title_full | Reflection coefficient and permeability of urea and ethylene glycol in the human red cell membrane |
title_fullStr | Reflection coefficient and permeability of urea and ethylene glycol in the human red cell membrane |
title_full_unstemmed | Reflection coefficient and permeability of urea and ethylene glycol in the human red cell membrane |
title_short | Reflection coefficient and permeability of urea and ethylene glycol in the human red cell membrane |
title_sort | reflection coefficient and permeability of urea and ethylene glycol in the human red cell membrane |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215567/ https://www.ncbi.nlm.nih.gov/pubmed/6842174 |