Cargando…

Permeability of human red cells to a homologous series of aliphatic alcohols. Limitations of the continuous flow-tube method

Human red cell permeability to the homologous series of methanol, ethanol, n-propanol, n-butanol, and n-hexanol was determined in tracer efflux experiments by the continuous flow tube method, whose time resolution is 2-3 ms. Control experiments showed that unstirred layers in the cell suspension wer...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1983
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215571/
https://www.ncbi.nlm.nih.gov/pubmed/6842175
_version_ 1782149037580877824
collection PubMed
description Human red cell permeability to the homologous series of methanol, ethanol, n-propanol, n-butanol, and n-hexanol was determined in tracer efflux experiments by the continuous flow tube method, whose time resolution is 2-3 ms. Control experiments showed that unstirred layers in the cell suspension were less than 2 X 10(-4) cm, and that permeabilities less than or equal to 10(-2) cm s-1 can be determined with the method. Alcohol permeability varied with the chain length (25 degrees C): Pmeth 3.7 X 10(-3) cm s-1, Peth 2.1 X 10(-3) cm s-1, Pprop 6.5 X 10(-3) cm s-1, Pbut less than or equal to 61 X 10(-3) cm s-1, Phex 8.7 X 10(-3) cm s-1. The permeability for methanol, ethanol, and n- propanol was concentration independent (1-500 mM). The permeability to n-butanol and n-hexanol, however, increased above the upper limit of determination at alcohol concentrations of 100 and 25 mM, respectively. The activation energies for the permeability to methanol, n-propanol, and n-hexanol were similar, 50-63 kJ mol-1. Methanol permeability was not reduced by p-chloromercuribenzene sulfonate (PCMBS), thiourea, or phloretin, which inhibit transport of water or hydrophilic nonelectrolytes. It is concluded (a) that all the alcohols predominantly permeate the membrane lipid bilayer structure; (b) that both the distribution coefficient and the diffusion coefficient of the alcohols within the membrane determine the permeability, and (c) that the relative importance of the two factors varies with changes in the chain length.
format Text
id pubmed-2215571
institution National Center for Biotechnology Information
language English
publishDate 1983
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22155712008-04-23 Permeability of human red cells to a homologous series of aliphatic alcohols. Limitations of the continuous flow-tube method J Gen Physiol Articles Human red cell permeability to the homologous series of methanol, ethanol, n-propanol, n-butanol, and n-hexanol was determined in tracer efflux experiments by the continuous flow tube method, whose time resolution is 2-3 ms. Control experiments showed that unstirred layers in the cell suspension were less than 2 X 10(-4) cm, and that permeabilities less than or equal to 10(-2) cm s-1 can be determined with the method. Alcohol permeability varied with the chain length (25 degrees C): Pmeth 3.7 X 10(-3) cm s-1, Peth 2.1 X 10(-3) cm s-1, Pprop 6.5 X 10(-3) cm s-1, Pbut less than or equal to 61 X 10(-3) cm s-1, Phex 8.7 X 10(-3) cm s-1. The permeability for methanol, ethanol, and n- propanol was concentration independent (1-500 mM). The permeability to n-butanol and n-hexanol, however, increased above the upper limit of determination at alcohol concentrations of 100 and 25 mM, respectively. The activation energies for the permeability to methanol, n-propanol, and n-hexanol were similar, 50-63 kJ mol-1. Methanol permeability was not reduced by p-chloromercuribenzene sulfonate (PCMBS), thiourea, or phloretin, which inhibit transport of water or hydrophilic nonelectrolytes. It is concluded (a) that all the alcohols predominantly permeate the membrane lipid bilayer structure; (b) that both the distribution coefficient and the diffusion coefficient of the alcohols within the membrane determine the permeability, and (c) that the relative importance of the two factors varies with changes in the chain length. The Rockefeller University Press 1983-02-01 /pmc/articles/PMC2215571/ /pubmed/6842175 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Permeability of human red cells to a homologous series of aliphatic alcohols. Limitations of the continuous flow-tube method
title Permeability of human red cells to a homologous series of aliphatic alcohols. Limitations of the continuous flow-tube method
title_full Permeability of human red cells to a homologous series of aliphatic alcohols. Limitations of the continuous flow-tube method
title_fullStr Permeability of human red cells to a homologous series of aliphatic alcohols. Limitations of the continuous flow-tube method
title_full_unstemmed Permeability of human red cells to a homologous series of aliphatic alcohols. Limitations of the continuous flow-tube method
title_short Permeability of human red cells to a homologous series of aliphatic alcohols. Limitations of the continuous flow-tube method
title_sort permeability of human red cells to a homologous series of aliphatic alcohols. limitations of the continuous flow-tube method
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215571/
https://www.ncbi.nlm.nih.gov/pubmed/6842175