Cargando…

Anion transport inhibitor binding to band 3 in red blood cell membranes

The inhibitor of anion exchange 4,4'-dibenzoamido-2,2'-disulfonic stilbene (DBDS) binds to band 3, the anion transport protein in human red cell ghost membranes, and undergoes a large increase in fluorescence intensity when bound to band 3. Equilibrium binding studies performed in the abse...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1983
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215580/
https://www.ncbi.nlm.nih.gov/pubmed/6842178
_version_ 1782149039693758464
collection PubMed
description The inhibitor of anion exchange 4,4'-dibenzoamido-2,2'-disulfonic stilbene (DBDS) binds to band 3, the anion transport protein in human red cell ghost membranes, and undergoes a large increase in fluorescence intensity when bound to band 3. Equilibrium binding studies performed in the absence of transportable anions show that DBDS binds to both a class of high-affinity (65 nM) and low-affinity (820 nM) sites with stoichiometry equivalent to 1.6 nmol/mg ghost protein for each site, which is consistent with one DBDS site on each band 3 monomer. The kinetics of DBDS binding were studied both by stopped-flow and temperature-jump experiments. The stopped-flow data indicate that DBDS binding to the apparent high-affinity site involves association with a low-affinity site (3 microM) followed by a slow (4 s-1) conformational change that locks the DBDS molecule in place. A detailed, quantitative fit of the temperature-jump data to several binding mechanisms supports a sequential-binding model, in which a first DBDS molecule binds to one monomer and induces a conformational change. A second DBDS molecule then binds to the second monomer. If the two monomers are assumed to be initially identical, thermodynamic characterization of the binding sites shows that the conformational change induces an interaction between the two monomers that modifies the characteristics of the second DBDS binding site.
format Text
id pubmed-2215580
institution National Center for Biotechnology Information
language English
publishDate 1983
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22155802008-04-23 Anion transport inhibitor binding to band 3 in red blood cell membranes J Gen Physiol Articles The inhibitor of anion exchange 4,4'-dibenzoamido-2,2'-disulfonic stilbene (DBDS) binds to band 3, the anion transport protein in human red cell ghost membranes, and undergoes a large increase in fluorescence intensity when bound to band 3. Equilibrium binding studies performed in the absence of transportable anions show that DBDS binds to both a class of high-affinity (65 nM) and low-affinity (820 nM) sites with stoichiometry equivalent to 1.6 nmol/mg ghost protein for each site, which is consistent with one DBDS site on each band 3 monomer. The kinetics of DBDS binding were studied both by stopped-flow and temperature-jump experiments. The stopped-flow data indicate that DBDS binding to the apparent high-affinity site involves association with a low-affinity site (3 microM) followed by a slow (4 s-1) conformational change that locks the DBDS molecule in place. A detailed, quantitative fit of the temperature-jump data to several binding mechanisms supports a sequential-binding model, in which a first DBDS molecule binds to one monomer and induces a conformational change. A second DBDS molecule then binds to the second monomer. If the two monomers are assumed to be initially identical, thermodynamic characterization of the binding sites shows that the conformational change induces an interaction between the two monomers that modifies the characteristics of the second DBDS binding site. The Rockefeller University Press 1983-03-01 /pmc/articles/PMC2215580/ /pubmed/6842178 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Anion transport inhibitor binding to band 3 in red blood cell membranes
title Anion transport inhibitor binding to band 3 in red blood cell membranes
title_full Anion transport inhibitor binding to band 3 in red blood cell membranes
title_fullStr Anion transport inhibitor binding to band 3 in red blood cell membranes
title_full_unstemmed Anion transport inhibitor binding to band 3 in red blood cell membranes
title_short Anion transport inhibitor binding to band 3 in red blood cell membranes
title_sort anion transport inhibitor binding to band 3 in red blood cell membranes
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215580/
https://www.ncbi.nlm.nih.gov/pubmed/6842178