Cargando…
Selective phenylglyoxalation of functionally essential arginyl residues in the erythrocyte anion transport protein
The red cell anion transport protein, band 3, can be selectively modified with phenylglyoxal, which modifies arginyl residues (arg) in proteins, usually with a phenylglyoxal: arg stoichiometry of 2:1. Indiscriminate modification of all arg in red cell membrane proteins occurred rapidly when both ext...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1983
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215588/ https://www.ncbi.nlm.nih.gov/pubmed/6854266 |
_version_ | 1782149041567563776 |
---|---|
collection | PubMed |
description | The red cell anion transport protein, band 3, can be selectively modified with phenylglyoxal, which modifies arginyl residues (arg) in proteins, usually with a phenylglyoxal: arg stoichiometry of 2:1. Indiscriminate modification of all arg in red cell membrane proteins occurred rapidly when both extra- and intracellular pH were above 10. Selective modification of extracellularly exposed arg was achieved when ghosts with a neutral or acid intracellular pH were treated with phenylglyoxal in an alkaline medium. The rate and specificity of modification depend on the extracellular chloride concentration. At 165 mM chloride maximum transport inactivation was accompanied by the binding of four phenylglyoxals per band 3 molecule. After removal of extracellular chloride, maximum transport inhibition was accompanied by the incorporation of two phenylglyoxals per band 3, which suggests that transport function is inactivated by the modification of a single arg. After cleavage of band 3 with extracellular chymotrypsin, [14C]phenylglyoxal was located almost exclusively in a 35,000-dalton peptide. In contrast, the primary covalent binding site of the isothiocyanostilbenedisulfonates is a lysyl residue in the second cleavage product, a 65,000-dalton fragment. This finding supports the view that the transport region of band 3 is composed of strands from both chymotryptic fragments. The binding of phenylglyoxal and the stilbene inhibitors interfered with each other. The rate of phenylglyoxal binding was reduced by a reversibly binding stilbenedisulfonate (DNDS), and covalent binding of [3H]DIDS to phenylglyoxal-modified membranes was strongly delayed. At DIDS concentrations below 10 10 micrometers, only 50% of the band 3 molecules were labeled with [3H]-DIDS during 90 min at 38 degrees C, thereby demonstrating an interaction between binding of the two inhibitors to the protomers of the oligomeric band 3 molecules. |
format | Text |
id | pubmed-2215588 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1983 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22155882008-04-23 Selective phenylglyoxalation of functionally essential arginyl residues in the erythrocyte anion transport protein J Gen Physiol Articles The red cell anion transport protein, band 3, can be selectively modified with phenylglyoxal, which modifies arginyl residues (arg) in proteins, usually with a phenylglyoxal: arg stoichiometry of 2:1. Indiscriminate modification of all arg in red cell membrane proteins occurred rapidly when both extra- and intracellular pH were above 10. Selective modification of extracellularly exposed arg was achieved when ghosts with a neutral or acid intracellular pH were treated with phenylglyoxal in an alkaline medium. The rate and specificity of modification depend on the extracellular chloride concentration. At 165 mM chloride maximum transport inactivation was accompanied by the binding of four phenylglyoxals per band 3 molecule. After removal of extracellular chloride, maximum transport inhibition was accompanied by the incorporation of two phenylglyoxals per band 3, which suggests that transport function is inactivated by the modification of a single arg. After cleavage of band 3 with extracellular chymotrypsin, [14C]phenylglyoxal was located almost exclusively in a 35,000-dalton peptide. In contrast, the primary covalent binding site of the isothiocyanostilbenedisulfonates is a lysyl residue in the second cleavage product, a 65,000-dalton fragment. This finding supports the view that the transport region of band 3 is composed of strands from both chymotryptic fragments. The binding of phenylglyoxal and the stilbene inhibitors interfered with each other. The rate of phenylglyoxal binding was reduced by a reversibly binding stilbenedisulfonate (DNDS), and covalent binding of [3H]DIDS to phenylglyoxal-modified membranes was strongly delayed. At DIDS concentrations below 10 10 micrometers, only 50% of the band 3 molecules were labeled with [3H]-DIDS during 90 min at 38 degrees C, thereby demonstrating an interaction between binding of the two inhibitors to the protomers of the oligomeric band 3 molecules. The Rockefeller University Press 1983-04-01 /pmc/articles/PMC2215588/ /pubmed/6854266 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Selective phenylglyoxalation of functionally essential arginyl residues in the erythrocyte anion transport protein |
title | Selective phenylglyoxalation of functionally essential arginyl residues in the erythrocyte anion transport protein |
title_full | Selective phenylglyoxalation of functionally essential arginyl residues in the erythrocyte anion transport protein |
title_fullStr | Selective phenylglyoxalation of functionally essential arginyl residues in the erythrocyte anion transport protein |
title_full_unstemmed | Selective phenylglyoxalation of functionally essential arginyl residues in the erythrocyte anion transport protein |
title_short | Selective phenylglyoxalation of functionally essential arginyl residues in the erythrocyte anion transport protein |
title_sort | selective phenylglyoxalation of functionally essential arginyl residues in the erythrocyte anion transport protein |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215588/ https://www.ncbi.nlm.nih.gov/pubmed/6854266 |