Cargando…
Excitation-contraction coupling in cardiac Purkinje fibers. Effects of cardiotonic steroids on the intracellular [Ca2+] transient, membrane potential, and contraction
The [Ca2+]-activated photoprotein aequorin was used to measure [Ca2+] in canine cardiac Purkinje fibers during the positive inotropic and toxic effects of ouabain, strophanthidin, and acetylstrophanthidin. The positive inotropic effect of these substances was associated with increases in the two com...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1984
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215639/ https://www.ncbi.nlm.nih.gov/pubmed/6325588 |
_version_ | 1782149045338243072 |
---|---|
collection | PubMed |
description | The [Ca2+]-activated photoprotein aequorin was used to measure [Ca2+] in canine cardiac Purkinje fibers during the positive inotropic and toxic effects of ouabain, strophanthidin, and acetylstrophanthidin. The positive inotropic effect of these substances was associated with increases in the two components of the aequorin signal, L1 and L2. On the average, strophanthidin at 10(-7) M produced steady, reversible increases in L1, L2, and peak twitch tension of 20, 91, and 240%, respectively. This corresponds to increases in the upper-limit spatial average [Ca2+] from 1.9 X 10(-6) M to 2.1 X 10(-6) M at L1 and from 1.4 X 10(-6) M to 1.8 X 10(-6) M at L2. Elevation of diastolic luminescence above the control level was not detected. At higher concentrations (5 X 10(-7) M), strophanthidin produced aftercontractions, diastolic depolarization, and transient depolarizations, all of which were associated with temporally similar changes in [Ca2+]. During these events, diastolic [Ca2+] rose from the normal level of approximately 3 X 10(-7) M up to 1-2 X 10(-6) M. The negative inotropic effect of 5 X 10(-7) M strophanthidin was not associated with a corresponding decrease in the [Ca2+] transient but was associated with a change in the relationship between [Ca2+] and tension. Assuming the Na+-lag mechanism of cardiotonic steroid action, we conclude the following: at low concentrations of drug, increased Ca2+ uptake by the sarcoplasmic reticulum prevents a detectable rise in cytoplasmic [Ca2+] during diastole, but this increased Ca2+ uptake results in increased release of Ca2+ during the action potential. At higher drug concentrations, observable [Ca2+] changes during diastole activate tension and membrane conductance changes. |
format | Text |
id | pubmed-2215639 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1984 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22156392008-04-23 Excitation-contraction coupling in cardiac Purkinje fibers. Effects of cardiotonic steroids on the intracellular [Ca2+] transient, membrane potential, and contraction J Gen Physiol Articles The [Ca2+]-activated photoprotein aequorin was used to measure [Ca2+] in canine cardiac Purkinje fibers during the positive inotropic and toxic effects of ouabain, strophanthidin, and acetylstrophanthidin. The positive inotropic effect of these substances was associated with increases in the two components of the aequorin signal, L1 and L2. On the average, strophanthidin at 10(-7) M produced steady, reversible increases in L1, L2, and peak twitch tension of 20, 91, and 240%, respectively. This corresponds to increases in the upper-limit spatial average [Ca2+] from 1.9 X 10(-6) M to 2.1 X 10(-6) M at L1 and from 1.4 X 10(-6) M to 1.8 X 10(-6) M at L2. Elevation of diastolic luminescence above the control level was not detected. At higher concentrations (5 X 10(-7) M), strophanthidin produced aftercontractions, diastolic depolarization, and transient depolarizations, all of which were associated with temporally similar changes in [Ca2+]. During these events, diastolic [Ca2+] rose from the normal level of approximately 3 X 10(-7) M up to 1-2 X 10(-6) M. The negative inotropic effect of 5 X 10(-7) M strophanthidin was not associated with a corresponding decrease in the [Ca2+] transient but was associated with a change in the relationship between [Ca2+] and tension. Assuming the Na+-lag mechanism of cardiotonic steroid action, we conclude the following: at low concentrations of drug, increased Ca2+ uptake by the sarcoplasmic reticulum prevents a detectable rise in cytoplasmic [Ca2+] during diastole, but this increased Ca2+ uptake results in increased release of Ca2+ during the action potential. At higher drug concentrations, observable [Ca2+] changes during diastole activate tension and membrane conductance changes. The Rockefeller University Press 1984-03-01 /pmc/articles/PMC2215639/ /pubmed/6325588 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Excitation-contraction coupling in cardiac Purkinje fibers. Effects of cardiotonic steroids on the intracellular [Ca2+] transient, membrane potential, and contraction |
title | Excitation-contraction coupling in cardiac Purkinje fibers. Effects of cardiotonic steroids on the intracellular [Ca2+] transient, membrane potential, and contraction |
title_full | Excitation-contraction coupling in cardiac Purkinje fibers. Effects of cardiotonic steroids on the intracellular [Ca2+] transient, membrane potential, and contraction |
title_fullStr | Excitation-contraction coupling in cardiac Purkinje fibers. Effects of cardiotonic steroids on the intracellular [Ca2+] transient, membrane potential, and contraction |
title_full_unstemmed | Excitation-contraction coupling in cardiac Purkinje fibers. Effects of cardiotonic steroids on the intracellular [Ca2+] transient, membrane potential, and contraction |
title_short | Excitation-contraction coupling in cardiac Purkinje fibers. Effects of cardiotonic steroids on the intracellular [Ca2+] transient, membrane potential, and contraction |
title_sort | excitation-contraction coupling in cardiac purkinje fibers. effects of cardiotonic steroids on the intracellular [ca2+] transient, membrane potential, and contraction |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215639/ https://www.ncbi.nlm.nih.gov/pubmed/6325588 |