Cargando…

Na and Ca channels in a transformed line of anterior pituitary cells

The ionic conductances of GH3 cells, a transformed line from rat anterior pituitary, have been studied using the whole-cell variant of the patch-clamp technique (Hamill et al., 1981). Pipettes of very low resistance were used, which improved time resolution and made it possible to control the ion co...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1984
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215643/
https://www.ncbi.nlm.nih.gov/pubmed/6325587
_version_ 1782149046256795648
collection PubMed
description The ionic conductances of GH3 cells, a transformed line from rat anterior pituitary, have been studied using the whole-cell variant of the patch-clamp technique (Hamill et al., 1981). Pipettes of very low resistance were used, which improved time resolution and made it possible to control the ion content of the cell interior, which equilibrated very rapidly with the pipette contents. Time resolution was further improved by using series resistance compensation and "ballistic charging" of the cell capacitance. We have identified and partially characterized at least three conductances, one carrying only outward current, and the other two normally inward. The outward current is absent when the pipette is filled with Cs+ instead of K+, and has the characteristics of a voltage-dependent potassium conductance. One of the two inward conductances (studied with Cs+ inside) has fast activation, inactivation and deactivation kinetics, is blocked by tetrodotoxin (TTX), and has a reversal potential at the sodium equilibrium potential. The other inward current activates more slowly and deactivates with a quick phase and a very slow phase after a short pulse. Either Ca++ or Ba++ serves as current carrier. During a prolonged pulse, current inactivates fairly completely if there is at least 5 mM Ca++ outside, and the amplitude of the current tails following the pulse diminishes with the time course of inactivation. When Ba++ entirely replaces Ca++ in the external medium, there is no inactivation, but deactivation kinetics of Ca channels vary as pulse duration increases: the slow phase disappears, the fast phase grows in amplitude. Inactivation (Ca++ outside) is unaltered by 50 mM EGTA in the pipette: inactivation cannot be the result of internal accumulation of Ca++.
format Text
id pubmed-2215643
institution National Center for Biotechnology Information
language English
publishDate 1984
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22156432008-04-23 Na and Ca channels in a transformed line of anterior pituitary cells J Gen Physiol Articles The ionic conductances of GH3 cells, a transformed line from rat anterior pituitary, have been studied using the whole-cell variant of the patch-clamp technique (Hamill et al., 1981). Pipettes of very low resistance were used, which improved time resolution and made it possible to control the ion content of the cell interior, which equilibrated very rapidly with the pipette contents. Time resolution was further improved by using series resistance compensation and "ballistic charging" of the cell capacitance. We have identified and partially characterized at least three conductances, one carrying only outward current, and the other two normally inward. The outward current is absent when the pipette is filled with Cs+ instead of K+, and has the characteristics of a voltage-dependent potassium conductance. One of the two inward conductances (studied with Cs+ inside) has fast activation, inactivation and deactivation kinetics, is blocked by tetrodotoxin (TTX), and has a reversal potential at the sodium equilibrium potential. The other inward current activates more slowly and deactivates with a quick phase and a very slow phase after a short pulse. Either Ca++ or Ba++ serves as current carrier. During a prolonged pulse, current inactivates fairly completely if there is at least 5 mM Ca++ outside, and the amplitude of the current tails following the pulse diminishes with the time course of inactivation. When Ba++ entirely replaces Ca++ in the external medium, there is no inactivation, but deactivation kinetics of Ca channels vary as pulse duration increases: the slow phase disappears, the fast phase grows in amplitude. Inactivation (Ca++ outside) is unaltered by 50 mM EGTA in the pipette: inactivation cannot be the result of internal accumulation of Ca++. The Rockefeller University Press 1984-03-01 /pmc/articles/PMC2215643/ /pubmed/6325587 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Na and Ca channels in a transformed line of anterior pituitary cells
title Na and Ca channels in a transformed line of anterior pituitary cells
title_full Na and Ca channels in a transformed line of anterior pituitary cells
title_fullStr Na and Ca channels in a transformed line of anterior pituitary cells
title_full_unstemmed Na and Ca channels in a transformed line of anterior pituitary cells
title_short Na and Ca channels in a transformed line of anterior pituitary cells
title_sort na and ca channels in a transformed line of anterior pituitary cells
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215643/
https://www.ncbi.nlm.nih.gov/pubmed/6325587