Cargando…

Feedback synaptic interaction in the dragonfly ocellar retina

The intracellular response of the ocellar nerve dendrite, the second order neuron in the retina of the dragonfly ocellus, has been modified by application of various drugs and a model developed to explain certain features of that response. Curare blocked the response completely. Both picrotoxin and...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1978
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215705/
https://www.ncbi.nlm.nih.gov/pubmed/205624
_version_ 1782149053383966720
collection PubMed
description The intracellular response of the ocellar nerve dendrite, the second order neuron in the retina of the dragonfly ocellus, has been modified by application of various drugs and a model developed to explain certain features of that response. Curare blocked the response completely. Both picrotoxin and bicuculline eliminated the "off" overshoot. Bicuculline also decreased the size of response and the sensitivity. gamma-Aminobutyric acid (GABA), however, increased the size of response. The evidence indicates the possibility that the receptor transmitter is acetylcholine and is inhibitory to the ocellar nerve dendrite whereas the feedback transmitter from the ocellar nerve dendrite may be GABA and is facilitory to receptor transmitter release. The model of synaptic feedback interaction developed to be consistent with these results has certain important features. It suggests that the feedback transmitter is released in the dark to increase input sensitivity from receptors in response to dim light. This implies that the dark potential of the ocellar nerve dendrite may be determined by a dynamic equilibrium established by synaptic interaction between it and the receptor terminals. Such a system is also well suited to signalling phasic information about changes in level of illumination over a wide range of intensities, a characteristic which appears to be a significant feature of the dragonfly median ocellar response.
format Text
id pubmed-2215705
institution National Center for Biotechnology Information
language English
publishDate 1978
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22157052008-04-23 Feedback synaptic interaction in the dragonfly ocellar retina J Gen Physiol Articles The intracellular response of the ocellar nerve dendrite, the second order neuron in the retina of the dragonfly ocellus, has been modified by application of various drugs and a model developed to explain certain features of that response. Curare blocked the response completely. Both picrotoxin and bicuculline eliminated the "off" overshoot. Bicuculline also decreased the size of response and the sensitivity. gamma-Aminobutyric acid (GABA), however, increased the size of response. The evidence indicates the possibility that the receptor transmitter is acetylcholine and is inhibitory to the ocellar nerve dendrite whereas the feedback transmitter from the ocellar nerve dendrite may be GABA and is facilitory to receptor transmitter release. The model of synaptic feedback interaction developed to be consistent with these results has certain important features. It suggests that the feedback transmitter is released in the dark to increase input sensitivity from receptors in response to dim light. This implies that the dark potential of the ocellar nerve dendrite may be determined by a dynamic equilibrium established by synaptic interaction between it and the receptor terminals. Such a system is also well suited to signalling phasic information about changes in level of illumination over a wide range of intensities, a characteristic which appears to be a significant feature of the dragonfly median ocellar response. The Rockefeller University Press 1978-02-01 /pmc/articles/PMC2215705/ /pubmed/205624 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Feedback synaptic interaction in the dragonfly ocellar retina
title Feedback synaptic interaction in the dragonfly ocellar retina
title_full Feedback synaptic interaction in the dragonfly ocellar retina
title_fullStr Feedback synaptic interaction in the dragonfly ocellar retina
title_full_unstemmed Feedback synaptic interaction in the dragonfly ocellar retina
title_short Feedback synaptic interaction in the dragonfly ocellar retina
title_sort feedback synaptic interaction in the dragonfly ocellar retina
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215705/
https://www.ncbi.nlm.nih.gov/pubmed/205624