Cargando…

Intestinal transport of weak electrolytes: Determinants of influx at the luminal surface

The determinants of weak electrolyte influx into everted segments of rat small intestine have been studied. Preliminary experiments showed that the observed influxes could be described as unidirectional, diffusional fluxes of the nonionized compound uncomplicated by a parallel ionic component. It is...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1978
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215728/
https://www.ncbi.nlm.nih.gov/pubmed/25945
_version_ 1782149054820515840
collection PubMed
description The determinants of weak electrolyte influx into everted segments of rat small intestine have been studied. Preliminary experiments showed that the observed influxes could be described as unidirectional, diffusional fluxes of the nonionized compound uncomplicated by a parallel ionic component. It is shown that the determinants of weak electrolyte influx in this situation may be described in terms of the resistance of the unstirred layer to movement from the bulk phase to the cell surface, the degree of ionization of the weak electrolyte at the cell surface, and the cellular permeability to the nonionized weak electrolyte. Quantitative considerations indicated that the unstirred layer was totally rate-limiting in the cases of some poorly ionized, or highly permeant compounds, but the unstirred layer was not totally rate limiting for most of the compounds studied. Calculation of cellular permeabilities for the nonionized forms of weak electrolytes required assumptions to be made concerning the pH value in the surface fluid layer. A uniform set of permeability data including both weak acids and weak bases was obtained only when it was assumed that the pH in the surface fluid layer was equal to that in the bulk phase, and it was concluded that these studies do not support the concept of a microclimate of distinctive pH at the epithelial surface as a determinant of weak electrolyte transport.
format Text
id pubmed-2215728
institution National Center for Biotechnology Information
language English
publishDate 1978
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22157282008-04-23 Intestinal transport of weak electrolytes: Determinants of influx at the luminal surface J Gen Physiol Articles The determinants of weak electrolyte influx into everted segments of rat small intestine have been studied. Preliminary experiments showed that the observed influxes could be described as unidirectional, diffusional fluxes of the nonionized compound uncomplicated by a parallel ionic component. It is shown that the determinants of weak electrolyte influx in this situation may be described in terms of the resistance of the unstirred layer to movement from the bulk phase to the cell surface, the degree of ionization of the weak electrolyte at the cell surface, and the cellular permeability to the nonionized weak electrolyte. Quantitative considerations indicated that the unstirred layer was totally rate-limiting in the cases of some poorly ionized, or highly permeant compounds, but the unstirred layer was not totally rate limiting for most of the compounds studied. Calculation of cellular permeabilities for the nonionized forms of weak electrolytes required assumptions to be made concerning the pH value in the surface fluid layer. A uniform set of permeability data including both weak acids and weak bases was obtained only when it was assumed that the pH in the surface fluid layer was equal to that in the bulk phase, and it was concluded that these studies do not support the concept of a microclimate of distinctive pH at the epithelial surface as a determinant of weak electrolyte transport. The Rockefeller University Press 1978-03-01 /pmc/articles/PMC2215728/ /pubmed/25945 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Intestinal transport of weak electrolytes: Determinants of influx at the luminal surface
title Intestinal transport of weak electrolytes: Determinants of influx at the luminal surface
title_full Intestinal transport of weak electrolytes: Determinants of influx at the luminal surface
title_fullStr Intestinal transport of weak electrolytes: Determinants of influx at the luminal surface
title_full_unstemmed Intestinal transport of weak electrolytes: Determinants of influx at the luminal surface
title_short Intestinal transport of weak electrolytes: Determinants of influx at the luminal surface
title_sort intestinal transport of weak electrolytes: determinants of influx at the luminal surface
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215728/
https://www.ncbi.nlm.nih.gov/pubmed/25945