Cargando…

Neurons, potassium, and glia in proximal retina of Necturus

Light-evoked K+ flux and intracellular Muller (glial) cell and on/off- neuron responses were recorded from the proximal retina of Necturus in eyecups from which the vitreous was not drained. On/off-responses, probably arising from amacrine cells, showed an initial transient and a sustained component...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1980
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215744/
https://www.ncbi.nlm.nih.gov/pubmed/6246191
_version_ 1782149057574076416
collection PubMed
description Light-evoked K+ flux and intracellular Muller (glial) cell and on/off- neuron responses were recorded from the proximal retina of Necturus in eyecups from which the vitreous was not drained. On/off-responses, probably arising from amacrine cells, showed an initial transient and a sustained component that always exhibited surround antagonism. Muller cell responses were small but otherwise similar to those recorded in eyecups drained of vitreous. The proximal K+ increase and Muller cell responses had identical decay times, and on some occasions the latency and rise time of the K+ increase nearly matched Muller cell responses, indicating that the recorded K+ responses were not always appreciably degraded by electrode "dead space." The spatiotemporal distribution of the K+ increase showed that both diffusion and active reuptake play important roles in K+ clearance. The relationship between on/off-neuron responses and the K+ increase was modelled by assuming that (a) K+ release is positively related to the instantaneous amplitude of the neural response, and (b) K+ accumulating in extracellular space is cleared via mechanisms with approximately exponential time-courses. These two processes were approximated by low-pass filtering the on/off- neuron responses, resulting in modelled responses that match the wave form and time-course of the K+ increase and behave quantitatively like the K+ increase to changes in stimulus intensity and diameter. Thus, on/off-neurons are probably a primary source of the proximal light- evoked K+ increase that depolarizes glial cells to generate the M-wave.
format Text
id pubmed-2215744
institution National Center for Biotechnology Information
language English
publishDate 1980
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22157442008-04-23 Neurons, potassium, and glia in proximal retina of Necturus J Gen Physiol Articles Light-evoked K+ flux and intracellular Muller (glial) cell and on/off- neuron responses were recorded from the proximal retina of Necturus in eyecups from which the vitreous was not drained. On/off-responses, probably arising from amacrine cells, showed an initial transient and a sustained component that always exhibited surround antagonism. Muller cell responses were small but otherwise similar to those recorded in eyecups drained of vitreous. The proximal K+ increase and Muller cell responses had identical decay times, and on some occasions the latency and rise time of the K+ increase nearly matched Muller cell responses, indicating that the recorded K+ responses were not always appreciably degraded by electrode "dead space." The spatiotemporal distribution of the K+ increase showed that both diffusion and active reuptake play important roles in K+ clearance. The relationship between on/off-neuron responses and the K+ increase was modelled by assuming that (a) K+ release is positively related to the instantaneous amplitude of the neural response, and (b) K+ accumulating in extracellular space is cleared via mechanisms with approximately exponential time-courses. These two processes were approximated by low-pass filtering the on/off- neuron responses, resulting in modelled responses that match the wave form and time-course of the K+ increase and behave quantitatively like the K+ increase to changes in stimulus intensity and diameter. Thus, on/off-neurons are probably a primary source of the proximal light- evoked K+ increase that depolarizes glial cells to generate the M-wave. The Rockefeller University Press 1980-02-01 /pmc/articles/PMC2215744/ /pubmed/6246191 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Neurons, potassium, and glia in proximal retina of Necturus
title Neurons, potassium, and glia in proximal retina of Necturus
title_full Neurons, potassium, and glia in proximal retina of Necturus
title_fullStr Neurons, potassium, and glia in proximal retina of Necturus
title_full_unstemmed Neurons, potassium, and glia in proximal retina of Necturus
title_short Neurons, potassium, and glia in proximal retina of Necturus
title_sort neurons, potassium, and glia in proximal retina of necturus
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215744/
https://www.ncbi.nlm.nih.gov/pubmed/6246191