Cargando…

The initial inward current in spherical clusters of chick embryonic heart cells

The rapid inward sodium current in spherical clusters of 11-d-old embryonic chick heart cells, ranging in size between 65 and 90 micron diameter, was studied using the two-microelectrode voltage-clamp technique. Using these preparations, it was possible to resolve the activation phase of the rapid i...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1980
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215749/
https://www.ncbi.nlm.nih.gov/pubmed/7381428
_version_ 1782149058724364288
collection PubMed
description The rapid inward sodium current in spherical clusters of 11-d-old embryonic chick heart cells, ranging in size between 65 and 90 micron diameter, was studied using the two-microelectrode voltage-clamp technique. Using these preparations, it was possible to resolve the activation phase of the rapid inward current for potentials negative to -25 mV at 37 degrees C. The rapid inward current exhibited a voltage and time dependence similar to that observed in other excitable tissues. It was initiated at potential steps more positive than -45 mV. The magnitude of the current reached its maximum value at a potential of approximately -20 mV. The measured reversal potential was that predicted by the Nernst equation for sodium ions. The falling phase of the current followed a single exponential time-course with a time constant of inactivation, tau h, ranging between 2.14 ms at -40 mV and 0.18 ms at -5 mV. The time constant of inactivation, tau h, determined by a single voltage-step protocol was compared to the constant, tau c, determined by a double voltage-step protocol and no significant different between the two constants of inactivation was found. Furthermore, the time constants of inactivation and reactivation at the same potential in the same preparation were similar. The results of this study demonstrate that the sodium current of heart cells recorded at 37 degrees C can be described by Hodgkin-Huxley kinetics with speeds approximately four times faster than the squid giant axon at 15 degrees C.
format Text
id pubmed-2215749
institution National Center for Biotechnology Information
language English
publishDate 1980
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22157492008-04-23 The initial inward current in spherical clusters of chick embryonic heart cells J Gen Physiol Articles The rapid inward sodium current in spherical clusters of 11-d-old embryonic chick heart cells, ranging in size between 65 and 90 micron diameter, was studied using the two-microelectrode voltage-clamp technique. Using these preparations, it was possible to resolve the activation phase of the rapid inward current for potentials negative to -25 mV at 37 degrees C. The rapid inward current exhibited a voltage and time dependence similar to that observed in other excitable tissues. It was initiated at potential steps more positive than -45 mV. The magnitude of the current reached its maximum value at a potential of approximately -20 mV. The measured reversal potential was that predicted by the Nernst equation for sodium ions. The falling phase of the current followed a single exponential time-course with a time constant of inactivation, tau h, ranging between 2.14 ms at -40 mV and 0.18 ms at -5 mV. The time constant of inactivation, tau h, determined by a single voltage-step protocol was compared to the constant, tau c, determined by a double voltage-step protocol and no significant different between the two constants of inactivation was found. Furthermore, the time constants of inactivation and reactivation at the same potential in the same preparation were similar. The results of this study demonstrate that the sodium current of heart cells recorded at 37 degrees C can be described by Hodgkin-Huxley kinetics with speeds approximately four times faster than the squid giant axon at 15 degrees C. The Rockefeller University Press 1980-04-01 /pmc/articles/PMC2215749/ /pubmed/7381428 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
The initial inward current in spherical clusters of chick embryonic heart cells
title The initial inward current in spherical clusters of chick embryonic heart cells
title_full The initial inward current in spherical clusters of chick embryonic heart cells
title_fullStr The initial inward current in spherical clusters of chick embryonic heart cells
title_full_unstemmed The initial inward current in spherical clusters of chick embryonic heart cells
title_short The initial inward current in spherical clusters of chick embryonic heart cells
title_sort initial inward current in spherical clusters of chick embryonic heart cells
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215749/
https://www.ncbi.nlm.nih.gov/pubmed/7381428