Calcium-induced inactivation of alamethicin in asymmetric lipid bilayers

This paper discusses a calcium-dependent inactivation of alamethicin- induced conductance in asymmetric lipid bilayers. The bilayers used were formed with one leaflet of phosphatidyl ethanolamine (PE) and one of phosphatidyl serine (PS). Calcium, initially confined to the neutral lipid (PE) side, ca...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1982
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215758/
https://www.ncbi.nlm.nih.gov/pubmed/7077290
Descripción
Sumario:This paper discusses a calcium-dependent inactivation of alamethicin- induced conductance in asymmetric lipid bilayers. The bilayers used were formed with one leaflet of phosphatidyl ethanolamine (PE) and one of phosphatidyl serine (PS). Calcium, initially confined to the neutral lipid (PE) side, can pass through the open alamethicin channel to the negative lipid (PS) side, where it can bind to the negative lipid and reduce the surface potential. Under appropriate circumstances, the voltage-dependent alamethicin conductance is thereby inactivated. We have formulated a model for this process based on the diffusion of calcium in the aqueous phases and we show that the model describes the kinetic properties of the alamethicin conductance under various circumstances. EGTA on the PS side of the membrane reduces the effects of calcium dramatically as predicted by the model.