Cargando…

Cyclic AMP inhibits Na+/H+ exchange at the apical membrane of Necturus gallbladder epithelium

The effects of elevating intracellular cAMP levels on Na+ transport across the apical membrane of Necturus gallbladder epithelium were studied by intracellular and extracellular microelectrode techniques. Intracellular cAMP was raised by serosal addition of the phosphodiesterase inhibitor theophylli...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1985
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215790/
https://www.ncbi.nlm.nih.gov/pubmed/2985735
_version_ 1782149065513893888
collection PubMed
description The effects of elevating intracellular cAMP levels on Na+ transport across the apical membrane of Necturus gallbladder epithelium were studied by intracellular and extracellular microelectrode techniques. Intracellular cAMP was raised by serosal addition of the phosphodiesterase inhibitor theophylline (3 mM) or mucosal addition of either 8-Br-cAMP (1 mM) or the adenylate cyclase activator forskolin (10 microM). During elevation of intracellular cAMP, intracellular Na+ activity (alpha Nai) and intracellular pH (pHi) decreased significantly. In addition, acidification of the mucosal solution, which contained either 100 or 10 mM Na+, was inhibited by approximately 50%. The inhibition was independent of the presence of Cl- in the bathing media. The rates of change of alpha Nai upon rapid alterations of mucosal [Na+] from 100 to 10 mM and from 10 to 100 mM were both decreased, and the rate of pHi recovery upon acid loading was also reduced by elevated cAMP levels. Inhibition was approximately 50% for all of these processes. These results indicate that cAMP inhibits apical membrane Na+/H+ exchange. The results of measurements of pHi recovery at 10 and 100 mM mucosal [Na+] and a kinetic analysis of recovery as a function of pHi suggest that the main or sole mechanism of the inhibitory effect of cAMP is a reduction in the maximal rate of acid extrusion. In conjunction with the increase in apical membrane electrodiffusional Cl- permeability, produced by cAMP, which causes a decrease in net Cl- entry (Petersen, K.-U., and L. Reuss, 1983, J. Gen. Physiol., 81:705), inhibition of Na+/H+ exchange contributes to the reduction of fluid absorption elicited by this agent. Similar mechanisms may account for the effects of cAMP in other epithelia with similar transport properties. It is also possible that inhibition of Na+/H+ exchange by cAMP plays a role in the regulation of pHi in other cell types.
format Text
id pubmed-2215790
institution National Center for Biotechnology Information
language English
publishDate 1985
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22157902008-04-23 Cyclic AMP inhibits Na+/H+ exchange at the apical membrane of Necturus gallbladder epithelium J Gen Physiol Articles The effects of elevating intracellular cAMP levels on Na+ transport across the apical membrane of Necturus gallbladder epithelium were studied by intracellular and extracellular microelectrode techniques. Intracellular cAMP was raised by serosal addition of the phosphodiesterase inhibitor theophylline (3 mM) or mucosal addition of either 8-Br-cAMP (1 mM) or the adenylate cyclase activator forskolin (10 microM). During elevation of intracellular cAMP, intracellular Na+ activity (alpha Nai) and intracellular pH (pHi) decreased significantly. In addition, acidification of the mucosal solution, which contained either 100 or 10 mM Na+, was inhibited by approximately 50%. The inhibition was independent of the presence of Cl- in the bathing media. The rates of change of alpha Nai upon rapid alterations of mucosal [Na+] from 100 to 10 mM and from 10 to 100 mM were both decreased, and the rate of pHi recovery upon acid loading was also reduced by elevated cAMP levels. Inhibition was approximately 50% for all of these processes. These results indicate that cAMP inhibits apical membrane Na+/H+ exchange. The results of measurements of pHi recovery at 10 and 100 mM mucosal [Na+] and a kinetic analysis of recovery as a function of pHi suggest that the main or sole mechanism of the inhibitory effect of cAMP is a reduction in the maximal rate of acid extrusion. In conjunction with the increase in apical membrane electrodiffusional Cl- permeability, produced by cAMP, which causes a decrease in net Cl- entry (Petersen, K.-U., and L. Reuss, 1983, J. Gen. Physiol., 81:705), inhibition of Na+/H+ exchange contributes to the reduction of fluid absorption elicited by this agent. Similar mechanisms may account for the effects of cAMP in other epithelia with similar transport properties. It is also possible that inhibition of Na+/H+ exchange by cAMP plays a role in the regulation of pHi in other cell types. The Rockefeller University Press 1985-03-01 /pmc/articles/PMC2215790/ /pubmed/2985735 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Cyclic AMP inhibits Na+/H+ exchange at the apical membrane of Necturus gallbladder epithelium
title Cyclic AMP inhibits Na+/H+ exchange at the apical membrane of Necturus gallbladder epithelium
title_full Cyclic AMP inhibits Na+/H+ exchange at the apical membrane of Necturus gallbladder epithelium
title_fullStr Cyclic AMP inhibits Na+/H+ exchange at the apical membrane of Necturus gallbladder epithelium
title_full_unstemmed Cyclic AMP inhibits Na+/H+ exchange at the apical membrane of Necturus gallbladder epithelium
title_short Cyclic AMP inhibits Na+/H+ exchange at the apical membrane of Necturus gallbladder epithelium
title_sort cyclic amp inhibits na+/h+ exchange at the apical membrane of necturus gallbladder epithelium
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215790/
https://www.ncbi.nlm.nih.gov/pubmed/2985735