Cargando…
Regulation of intracellular pH in human neutrophils
The intracellular pH (pHi) of isolated human peripheral blood neutrophils was measured from the fluorescence of 6-carboxyfluorescein (6-CF) and from the equilibrium distribution of [14C]5,5- dimethyloxazolidine -2,4-dione (DMO). At an extracellular pH (pHo) of 7.40 in nominally CO2-free medium, the...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1985
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215795/ https://www.ncbi.nlm.nih.gov/pubmed/2985737 |
_version_ | 1782149066698784768 |
---|---|
collection | PubMed |
description | The intracellular pH (pHi) of isolated human peripheral blood neutrophils was measured from the fluorescence of 6-carboxyfluorescein (6-CF) and from the equilibrium distribution of [14C]5,5- dimethyloxazolidine -2,4-dione (DMO). At an extracellular pH (pHo) of 7.40 in nominally CO2-free medium, the steady state pHi using either indicator was approximately 7.25. When pHo was suddenly raised from 7.40 to 8.40 in the nominal absence of CO2, pHi slowly rose by approximately 0.35 during the subsequent hour. A change of similar magnitude in the opposite direction occurred when pHo was reduced to 6.40. Both changes were reversible. Intrinsic intracellular buffering power, determined by using graded pulses of CO2 or NH4Cl, was approximately 50 mM/pH over the pHi range of 6.8-7.9. The course of pHi obtained from the distribution of DMO was followed during and after imposition of intracellular acid and alkaline loads. Intracellular acidification was brought about either by exposing cells to 18% CO2 or by prepulsing with 30 mM NH4Cl, while pHo was maintained at 7.40. In both instances, pHi (6.80 and 6.45, respectively) recovered toward the control value at rates of 0.029 and 0.134 pH/min. These rates were reduced by approximately 90% either by 1 mM amiloride or by replacement of extracellular Na with N-methyl-D-glucamine. Recovery was not affected by 1 mM SITS or by 40 mM alpha-cyano-4-hydroxycinnamate (CHC), which inhibits anion exchange in neutrophils. Therefore, recovery from acid loading is probably due to an exchange of internal H for external Na. Intracellular alkalinization was achieved by exposing the cells to 30 mM NH4Cl or by prepulsing with 18% CO2, both at a constant pHo 7.40. In both instances, pHi, which was 7.65 and 7.76, respectively, recovered to the control value. The recovery rates (0.033 and 0.077 pH/min, respectively) were reduced by 80-90% either by 40 mM CHC or by replacement of extracellular Cl with p-aminohippurate (PAH). SITS, amiloride, and ouabain (0.1 mM) were ineffective.(ABSTRACT TRUNCATED AT 400 WORDS) |
format | Text |
id | pubmed-2215795 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1985 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22157952008-04-23 Regulation of intracellular pH in human neutrophils J Gen Physiol Articles The intracellular pH (pHi) of isolated human peripheral blood neutrophils was measured from the fluorescence of 6-carboxyfluorescein (6-CF) and from the equilibrium distribution of [14C]5,5- dimethyloxazolidine -2,4-dione (DMO). At an extracellular pH (pHo) of 7.40 in nominally CO2-free medium, the steady state pHi using either indicator was approximately 7.25. When pHo was suddenly raised from 7.40 to 8.40 in the nominal absence of CO2, pHi slowly rose by approximately 0.35 during the subsequent hour. A change of similar magnitude in the opposite direction occurred when pHo was reduced to 6.40. Both changes were reversible. Intrinsic intracellular buffering power, determined by using graded pulses of CO2 or NH4Cl, was approximately 50 mM/pH over the pHi range of 6.8-7.9. The course of pHi obtained from the distribution of DMO was followed during and after imposition of intracellular acid and alkaline loads. Intracellular acidification was brought about either by exposing cells to 18% CO2 or by prepulsing with 30 mM NH4Cl, while pHo was maintained at 7.40. In both instances, pHi (6.80 and 6.45, respectively) recovered toward the control value at rates of 0.029 and 0.134 pH/min. These rates were reduced by approximately 90% either by 1 mM amiloride or by replacement of extracellular Na with N-methyl-D-glucamine. Recovery was not affected by 1 mM SITS or by 40 mM alpha-cyano-4-hydroxycinnamate (CHC), which inhibits anion exchange in neutrophils. Therefore, recovery from acid loading is probably due to an exchange of internal H for external Na. Intracellular alkalinization was achieved by exposing the cells to 30 mM NH4Cl or by prepulsing with 18% CO2, both at a constant pHo 7.40. In both instances, pHi, which was 7.65 and 7.76, respectively, recovered to the control value. The recovery rates (0.033 and 0.077 pH/min, respectively) were reduced by 80-90% either by 40 mM CHC or by replacement of extracellular Cl with p-aminohippurate (PAH). SITS, amiloride, and ouabain (0.1 mM) were ineffective.(ABSTRACT TRUNCATED AT 400 WORDS) The Rockefeller University Press 1985-03-01 /pmc/articles/PMC2215795/ /pubmed/2985737 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Regulation of intracellular pH in human neutrophils |
title | Regulation of intracellular pH in human neutrophils |
title_full | Regulation of intracellular pH in human neutrophils |
title_fullStr | Regulation of intracellular pH in human neutrophils |
title_full_unstemmed | Regulation of intracellular pH in human neutrophils |
title_short | Regulation of intracellular pH in human neutrophils |
title_sort | regulation of intracellular ph in human neutrophils |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215795/ https://www.ncbi.nlm.nih.gov/pubmed/2985737 |