Cargando…

Dynamic responses of electrically coupled systems

An identified pair of electrically coupled neurons in the buccal ganglion of the freshwater snail Helisoma trivolvis is an experimentally accessible model of electrical synaptic transmission. In this investigation, electrical synaptic transmission is characterized using sinusoidal frequency (Bode) r...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1986
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215875/
https://www.ncbi.nlm.nih.gov/pubmed/3009685
_version_ 1782149076413841408
collection PubMed
description An identified pair of electrically coupled neurons in the buccal ganglion of the freshwater snail Helisoma trivolvis is an experimentally accessible model of electrical synaptic transmission. In this investigation, electrical synaptic transmission is characterized using sinusoidal frequency (Bode) responses computed by Laplace transforms and responses to brief stimuli. The frequency response of the injected neuron shows a 20-dB/decade attenuation and a phase shift from 0 degree at low frequencies to -90 degrees at high frequencies. The response of a coupled cell shows a 40-dB/decade attenuation and a phase shift from 0 degrees at low frequencies to -180 degrees at high frequencies. A simple mathematical model of electrical synaptic transmission is described that displays each of these crucial features of the measured frequency responses. Methods are described to estimate the frequency responses of coupled systems based on presynaptic measurements. The responses of the coupled system to brief pulses of current were computed using the principle of superposition. The electrical properties of coupled systems impose a minimum delay in reaching a peak in all postsynaptic responses. The delays in the postsynaptic responses to brief stimuli are related to the electrical and anatomical parameters of coupled networks.
format Text
id pubmed-2215875
institution National Center for Biotechnology Information
language English
publishDate 1986
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22158752008-04-23 Dynamic responses of electrically coupled systems J Gen Physiol Articles An identified pair of electrically coupled neurons in the buccal ganglion of the freshwater snail Helisoma trivolvis is an experimentally accessible model of electrical synaptic transmission. In this investigation, electrical synaptic transmission is characterized using sinusoidal frequency (Bode) responses computed by Laplace transforms and responses to brief stimuli. The frequency response of the injected neuron shows a 20-dB/decade attenuation and a phase shift from 0 degree at low frequencies to -90 degrees at high frequencies. The response of a coupled cell shows a 40-dB/decade attenuation and a phase shift from 0 degrees at low frequencies to -180 degrees at high frequencies. A simple mathematical model of electrical synaptic transmission is described that displays each of these crucial features of the measured frequency responses. Methods are described to estimate the frequency responses of coupled systems based on presynaptic measurements. The responses of the coupled system to brief pulses of current were computed using the principle of superposition. The electrical properties of coupled systems impose a minimum delay in reaching a peak in all postsynaptic responses. The delays in the postsynaptic responses to brief stimuli are related to the electrical and anatomical parameters of coupled networks. The Rockefeller University Press 1986-04-01 /pmc/articles/PMC2215875/ /pubmed/3009685 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Dynamic responses of electrically coupled systems
title Dynamic responses of electrically coupled systems
title_full Dynamic responses of electrically coupled systems
title_fullStr Dynamic responses of electrically coupled systems
title_full_unstemmed Dynamic responses of electrically coupled systems
title_short Dynamic responses of electrically coupled systems
title_sort dynamic responses of electrically coupled systems
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215875/
https://www.ncbi.nlm.nih.gov/pubmed/3009685