Cargando…

Extracellular calcium transients at single excitations in rabbit atrium measured with tetramethylmurexide

Extracellular calcium transients were resolved within the time course of single contraction cycles in rabbit left atrium using tetramethylmurexide (2 mM) as the calcium-sensitive dye (150-250 microM total calcium, 80-150 microM free calcium). Net extracellular calcium depletion began within 2-4 ms u...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1986
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215890/
https://www.ncbi.nlm.nih.gov/pubmed/3723105
Descripción
Sumario:Extracellular calcium transients were resolved within the time course of single contraction cycles in rabbit left atrium using tetramethylmurexide (2 mM) as the calcium-sensitive dye (150-250 microM total calcium, 80-150 microM free calcium). Net extracellular calcium depletion began within 2-4 ms upon excitation; over the following 5-20 ms, depletion continued steeply and amounted to 0.2 mumol/kg wet weight X 10 ms (135 microM free extracellular calcium). In regularly excited muscles (0.5-2 Hz), net depletion slowed rapidly and stopped early during the rise of contractile motion monitored by transmitted light. Maximum depletions amounted to 0.2-0.5% of total extracellular calcium (0.2-0.5 mumol/kg wet weight with 135 microM free calcium). Replenishment of extracellular calcium began at the latest midway to the peak of the motion signal. Calcium replenishment could be complete for the most part by an early phase of relaxation or could take place continuously through relaxation. The maximal net depletion per beat decreased manyfold with a decrease of frequency from 1 to 0.05 Hz. During paired pulse stimulation (200-300-ms twin pulse separation at basal rates of 0.3-1 Hz), extracellular calcium accumulation was enhanced at the initial potentiated contraction; extracellular calcium depletion was prolonged at the low-level premature contraction. With quadruple stimulation (three premature excitations), the apparent rate of net extracellular calcium accumulation at potentiated contractions approached or exceeded the apparent rate of early net calcium depletion. Under the special circumstance of a strongly potentiated post-stimulatory contraction after greater than 5 s rest, repolarization beyond -40 mV occurred within 10 ms, net extracellular calcium accumulation began with the onset of muscle motion, and net extracellular calcium accumulation (1-3 microM/kg wet weight) coincided with a more positive late action potential in comparison with subsequent action potentials. Consistent changes of the apparent rate of early net calcium depletion were not found with any of the simulation patterns examined. In ryanodine-pretreated atria, the duration of depletion was clearly limited by action potential duration at post-rest stimulations; in the presence of 4-aminopyridine (2 mM), depletion continued essentially undiminished for up to 200 ms. The resulting net depletion magnitudes were greater than 10 times larger than the transient depletions found during steady stimulation.