Cargando…

Sodium channel gating currents. Origin of the rising phase

There has been some uncertainty in the past as to the origin of the rising phase of the gating current. We present evidence here that proves that the gating current does not have a rising phase and that the observed rising phase is due to an uncompensated series resistance in the Frankenhaeuser-Hodg...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1987
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215913/
https://www.ncbi.nlm.nih.gov/pubmed/2438370
_version_ 1782149084472147968
collection PubMed
description There has been some uncertainty in the past as to the origin of the rising phase of the gating current. We present evidence here that proves that the gating current does not have a rising phase and that the observed rising phase is due to an uncompensated series resistance in the Frankenhaeuser-Hodgkin (F-H) space. When a squid giant axon is bathed in a solution that is 10-20% hyperosmotic with respect to the internal solution, the rising phase of the gating current is eliminated. In parallel with this, a component of the capacity transient (time constant, 20 microseconds) is reduced so that the capacity transient now appears to be closer to a single fast (5-10 microseconds) component. These changes in the capacity transient and gating current occur without altering the amount of charge moved in either. This indicates that the charge is simply redistributed in time. The gating current without a rising phase can still be immobilized by inactivation. Supporting evidence is provided by measuring the accumulation and washout of K+ from the F-H space. It was found that K+ washes out 35% faster when the axon is bathed in hyperosmotic solution. It was estimated that the F-H space thickness (theta) increased 2.5 +/- 0.4-fold (mean +/- SEM) in hyperosmotic solution. Similarly, K+ accumulation in the F-H space was decreased, leading to an estimate of a 5 +/- 1.4-fold increase in theta in hyperosmotic solution. These results are consistent with the simple structural model presented.
format Text
id pubmed-2215913
institution National Center for Biotechnology Information
language English
publishDate 1987
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22159132008-04-23 Sodium channel gating currents. Origin of the rising phase J Gen Physiol Articles There has been some uncertainty in the past as to the origin of the rising phase of the gating current. We present evidence here that proves that the gating current does not have a rising phase and that the observed rising phase is due to an uncompensated series resistance in the Frankenhaeuser-Hodgkin (F-H) space. When a squid giant axon is bathed in a solution that is 10-20% hyperosmotic with respect to the internal solution, the rising phase of the gating current is eliminated. In parallel with this, a component of the capacity transient (time constant, 20 microseconds) is reduced so that the capacity transient now appears to be closer to a single fast (5-10 microseconds) component. These changes in the capacity transient and gating current occur without altering the amount of charge moved in either. This indicates that the charge is simply redistributed in time. The gating current without a rising phase can still be immobilized by inactivation. Supporting evidence is provided by measuring the accumulation and washout of K+ from the F-H space. It was found that K+ washes out 35% faster when the axon is bathed in hyperosmotic solution. It was estimated that the F-H space thickness (theta) increased 2.5 +/- 0.4-fold (mean +/- SEM) in hyperosmotic solution. Similarly, K+ accumulation in the F-H space was decreased, leading to an estimate of a 5 +/- 1.4-fold increase in theta in hyperosmotic solution. These results are consistent with the simple structural model presented. The Rockefeller University Press 1987-04-01 /pmc/articles/PMC2215913/ /pubmed/2438370 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Sodium channel gating currents. Origin of the rising phase
title Sodium channel gating currents. Origin of the rising phase
title_full Sodium channel gating currents. Origin of the rising phase
title_fullStr Sodium channel gating currents. Origin of the rising phase
title_full_unstemmed Sodium channel gating currents. Origin of the rising phase
title_short Sodium channel gating currents. Origin of the rising phase
title_sort sodium channel gating currents. origin of the rising phase
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215913/
https://www.ncbi.nlm.nih.gov/pubmed/2438370