Cargando…
Identification of DNA-binding proteins using support vector machines and evolutionary profiles
BACKGROUND: Identification of DNA-binding proteins is one of the major challenges in the field of genome annotation, as these proteins play a crucial role in gene-regulation. In this paper, we developed various SVM modules for predicting DNA-binding domains and proteins. All models were trained and...
Autores principales: | Kumar, Manish, Gromiha, Michael M, Raghava, Gajendra PS |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216048/ https://www.ncbi.nlm.nih.gov/pubmed/18042272 http://dx.doi.org/10.1186/1471-2105-8-463 |
Ejemplares similares
-
Support Vector Machine-based method for predicting subcellular localization of mycobacterial proteins using evolutionary information and motifs
por: Rashid, Mamoon, et al.
Publicado: (2007) -
Prediction of nuclear proteins using SVM and HMM models
por: Kumar, Manish, et al.
Publicado: (2009) -
Identification of ATP binding residues of a protein from its primary sequence
por: Chauhan, Jagat S, et al.
Publicado: (2009) -
Identification of DNA-Binding Proteins Using Support Vector Machine with Sequence Information
por: Ma, Xin, et al.
Publicado: (2013) -
Prediction of FAD interacting residues in a protein from its primary sequence using evolutionary information
por: Mishra, Nitish K, et al.
Publicado: (2010)