Cargando…

Effects of lowering extracellular and cytosolic pH on calcium fluxes, cytosolic calcium levels, and transmitter release in presynaptic nerve terminals isolated from rat brain

We examined the effects of extracellular and intracellular pH changes on the influx of radioactive 45Ca, the concentration of ionized Ca (pCai) as monitored with the Ca-sensitive fluorescent indicator fura-2, and the efflux of dopamine in presynaptic nerve endings (synaptosomes) isolated from rat br...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1988
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216128/
https://www.ncbi.nlm.nih.gov/pubmed/3373181
_version_ 1782149111072423936
collection PubMed
description We examined the effects of extracellular and intracellular pH changes on the influx of radioactive 45Ca, the concentration of ionized Ca (pCai) as monitored with the Ca-sensitive fluorescent indicator fura-2, and the efflux of dopamine in presynaptic nerve endings (synaptosomes) isolated from rat brain corpora striata and preloaded with [3H]dopamine. Cytosolic pH (pHi) was monitored by loading the synaptosomes with the H+-sensitive fluorescent indicator 2',7'- bis(carboxyethyl)-5,6-carboxyfluorescein (BCECF) (see Nachshen, D. A., and P. Drapeau, 1988, Journal of General Physiology, 91:289-303). An abrupt decrease of the pH of the external medium, from 7.4 to 5.5, produced a slow decrease of pHi (over a 5-min period) from an initial value of 7.2 to a steady state level of approximately 5.8. When 20 mM acetate was present in acidic media, pHi dropped as fast as could be measured (within 2 s) to a level similar to that reached (more slowly) in the absence of acetate. It was therefore possible to lower pHi over short time periods to different levels depending on whether or not acetate was present upon extracellular acidification. Extracellular acidification to pH 5.5 (in the absence of acetate) had no significant effect on pCai and dopamine release over a 30-s period (pHi = 6.4). Acidification in the presence of acetate lowered pHi to 5.8 without affecting pCai, but dopamine efflux increased approximately 20-fold. This increase in basal dopamine release was also observed in the absence of extracellular Ca. Thus, intraterminal, but not extracellular, acidification could stimulate the efflux of dopamine in a Ca-independent manner. The high Q10 (3.6) of acid-stimulated dopamine efflux in the presence of nomifensine (which blocks the dopamine carrier) was consistent with an activation of vesicular dopamine release by H+. When synaptosomes were both depolarized for 2 s in high- K (77.5 mM) solutions and acidified (in the absence of acetate), there was a parallel block of 45Ca entry and evoked dopamine release (50% block at pH 6.0 with 0.2 mM external Ca). When acetate was included in the acidic media to further reduce pHi, Ca entry remained blocked, but evoked dopamine release was increased. Therefore, extracellular, but not cytosolic, acidification inhibited the release of dopamine by blocking voltage-gated Ca channels. The stimulation by cytosolic acidification of both basal and evoked dopamine release suggests that vesicular release in resting and depolarized synaptosomes was directly activated by cytoplasmic H+.
format Text
id pubmed-2216128
institution National Center for Biotechnology Information
language English
publishDate 1988
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22161282008-04-23 Effects of lowering extracellular and cytosolic pH on calcium fluxes, cytosolic calcium levels, and transmitter release in presynaptic nerve terminals isolated from rat brain J Gen Physiol Articles We examined the effects of extracellular and intracellular pH changes on the influx of radioactive 45Ca, the concentration of ionized Ca (pCai) as monitored with the Ca-sensitive fluorescent indicator fura-2, and the efflux of dopamine in presynaptic nerve endings (synaptosomes) isolated from rat brain corpora striata and preloaded with [3H]dopamine. Cytosolic pH (pHi) was monitored by loading the synaptosomes with the H+-sensitive fluorescent indicator 2',7'- bis(carboxyethyl)-5,6-carboxyfluorescein (BCECF) (see Nachshen, D. A., and P. Drapeau, 1988, Journal of General Physiology, 91:289-303). An abrupt decrease of the pH of the external medium, from 7.4 to 5.5, produced a slow decrease of pHi (over a 5-min period) from an initial value of 7.2 to a steady state level of approximately 5.8. When 20 mM acetate was present in acidic media, pHi dropped as fast as could be measured (within 2 s) to a level similar to that reached (more slowly) in the absence of acetate. It was therefore possible to lower pHi over short time periods to different levels depending on whether or not acetate was present upon extracellular acidification. Extracellular acidification to pH 5.5 (in the absence of acetate) had no significant effect on pCai and dopamine release over a 30-s period (pHi = 6.4). Acidification in the presence of acetate lowered pHi to 5.8 without affecting pCai, but dopamine efflux increased approximately 20-fold. This increase in basal dopamine release was also observed in the absence of extracellular Ca. Thus, intraterminal, but not extracellular, acidification could stimulate the efflux of dopamine in a Ca-independent manner. The high Q10 (3.6) of acid-stimulated dopamine efflux in the presence of nomifensine (which blocks the dopamine carrier) was consistent with an activation of vesicular dopamine release by H+. When synaptosomes were both depolarized for 2 s in high- K (77.5 mM) solutions and acidified (in the absence of acetate), there was a parallel block of 45Ca entry and evoked dopamine release (50% block at pH 6.0 with 0.2 mM external Ca). When acetate was included in the acidic media to further reduce pHi, Ca entry remained blocked, but evoked dopamine release was increased. Therefore, extracellular, but not cytosolic, acidification inhibited the release of dopamine by blocking voltage-gated Ca channels. The stimulation by cytosolic acidification of both basal and evoked dopamine release suggests that vesicular release in resting and depolarized synaptosomes was directly activated by cytoplasmic H+. The Rockefeller University Press 1988-02-01 /pmc/articles/PMC2216128/ /pubmed/3373181 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Effects of lowering extracellular and cytosolic pH on calcium fluxes, cytosolic calcium levels, and transmitter release in presynaptic nerve terminals isolated from rat brain
title Effects of lowering extracellular and cytosolic pH on calcium fluxes, cytosolic calcium levels, and transmitter release in presynaptic nerve terminals isolated from rat brain
title_full Effects of lowering extracellular and cytosolic pH on calcium fluxes, cytosolic calcium levels, and transmitter release in presynaptic nerve terminals isolated from rat brain
title_fullStr Effects of lowering extracellular and cytosolic pH on calcium fluxes, cytosolic calcium levels, and transmitter release in presynaptic nerve terminals isolated from rat brain
title_full_unstemmed Effects of lowering extracellular and cytosolic pH on calcium fluxes, cytosolic calcium levels, and transmitter release in presynaptic nerve terminals isolated from rat brain
title_short Effects of lowering extracellular and cytosolic pH on calcium fluxes, cytosolic calcium levels, and transmitter release in presynaptic nerve terminals isolated from rat brain
title_sort effects of lowering extracellular and cytosolic ph on calcium fluxes, cytosolic calcium levels, and transmitter release in presynaptic nerve terminals isolated from rat brain
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216128/
https://www.ncbi.nlm.nih.gov/pubmed/3373181