Cargando…

Excitation of skinned muscle fibers by imposed ion gradients. III. Distribution of permeant ions in unstimulated and stimulated fibers

Ion gradients imposed across an internal membrane system stimulate skinned muscle fibers; to evaluate the sarcoplasmic reticulum (SR) as the primary target site, SR polarization under resting and stimulatory conditions was assessed from fiber uptake of permeant probe ions. Solvent spaces were estima...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1989
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216196/
https://www.ncbi.nlm.nih.gov/pubmed/2783728
_version_ 1782149117413163008
collection PubMed
description Ion gradients imposed across an internal membrane system stimulate skinned muscle fibers; to evaluate the sarcoplasmic reticulum (SR) as the primary target site, SR polarization under resting and stimulatory conditions was assessed from fiber uptake of permeant probe ions. Solvent spaces were estimated from simultaneous [14C]urea (U) or [3H]deoxyglucose (DOG) uptake in segments of fibers from bullfrog semitendinosus muscle, skinned by microdissection. The distribution spaces, i.e., virtual solvent volumes at bath concentrations (Vu and VDOG), of these uncharged probes correlated well with the protein content of the same segments, which validated the tracer methodology for volume normalization. The membrane-bounded volume fraction (Vm), derived from the difference between total solvent volume (Vs) and the non-membrane-bounded solvent volume (Vc), was sufficient to detect appreciable SR ion accumulation. The Vm estimated from the difference between VU and VDOG assayed simultaneously with 2 or 5-6 min exposures was 10-11%, which is consistent with the morphometric volume fraction (mostly SR) in frog fibers; however, the change in this difference after membrane permeabilization corresponded to Vm only 5%. The change in permeant ion distribution space caused by member permeabilization was used to assess SR membrane polarization, assuming the free ions distribute across the intact membrane according to the Nernst ratio. Resting polarization (SR lumen positive) was assessed from [14C]SCN- or [14C]propionate- distribution spaces in unstimulated fibers, expressed relative to VDOG (assayed simultaneously). The ratios for (a) [14C]SCN- space (carrier 2 mM) and (b) [14C]propionate- space (carrier 120 mM) were not decreased by membrane permeabilization. This indicated that anion distribution was independent of membrane integrity and did not reflect an SR transmembrane potential, although a was more and b was less than 1. Polarization under stimulatory conditions (lumen negative) was assessed from 86Rb+ distribution, before and after an imposed ion gradient (choline Cl replacement of K methanesulfonate (KMes) at constant [K+] [Cl-]) that theoretically could generate a 48-fold transmembrane cation ratio; Ca release was minimized by EGTA. The ratio of 86Rb+ space to VU, greater than 1 in KMes (120 mM K, the effective carrier), was higher in choline Cl (2.5 mM K) but not decreased by membrane permeabilization; this indicated that 86Rb+ distribution did not reflect an SR transmembrane potential. Similar results in the presence of valinomycin ruled out the possibility of inadequate 86Rb+ equilibration.(ABSTRACT TRUNCATED AT 400 WORDS)
format Text
id pubmed-2216196
institution National Center for Biotechnology Information
language English
publishDate 1989
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22161962008-04-23 Excitation of skinned muscle fibers by imposed ion gradients. III. Distribution of permeant ions in unstimulated and stimulated fibers J Gen Physiol Articles Ion gradients imposed across an internal membrane system stimulate skinned muscle fibers; to evaluate the sarcoplasmic reticulum (SR) as the primary target site, SR polarization under resting and stimulatory conditions was assessed from fiber uptake of permeant probe ions. Solvent spaces were estimated from simultaneous [14C]urea (U) or [3H]deoxyglucose (DOG) uptake in segments of fibers from bullfrog semitendinosus muscle, skinned by microdissection. The distribution spaces, i.e., virtual solvent volumes at bath concentrations (Vu and VDOG), of these uncharged probes correlated well with the protein content of the same segments, which validated the tracer methodology for volume normalization. The membrane-bounded volume fraction (Vm), derived from the difference between total solvent volume (Vs) and the non-membrane-bounded solvent volume (Vc), was sufficient to detect appreciable SR ion accumulation. The Vm estimated from the difference between VU and VDOG assayed simultaneously with 2 or 5-6 min exposures was 10-11%, which is consistent with the morphometric volume fraction (mostly SR) in frog fibers; however, the change in this difference after membrane permeabilization corresponded to Vm only 5%. The change in permeant ion distribution space caused by member permeabilization was used to assess SR membrane polarization, assuming the free ions distribute across the intact membrane according to the Nernst ratio. Resting polarization (SR lumen positive) was assessed from [14C]SCN- or [14C]propionate- distribution spaces in unstimulated fibers, expressed relative to VDOG (assayed simultaneously). The ratios for (a) [14C]SCN- space (carrier 2 mM) and (b) [14C]propionate- space (carrier 120 mM) were not decreased by membrane permeabilization. This indicated that anion distribution was independent of membrane integrity and did not reflect an SR transmembrane potential, although a was more and b was less than 1. Polarization under stimulatory conditions (lumen negative) was assessed from 86Rb+ distribution, before and after an imposed ion gradient (choline Cl replacement of K methanesulfonate (KMes) at constant [K+] [Cl-]) that theoretically could generate a 48-fold transmembrane cation ratio; Ca release was minimized by EGTA. The ratio of 86Rb+ space to VU, greater than 1 in KMes (120 mM K, the effective carrier), was higher in choline Cl (2.5 mM K) but not decreased by membrane permeabilization; this indicated that 86Rb+ distribution did not reflect an SR transmembrane potential. Similar results in the presence of valinomycin ruled out the possibility of inadequate 86Rb+ equilibration.(ABSTRACT TRUNCATED AT 400 WORDS) The Rockefeller University Press 1989-01-01 /pmc/articles/PMC2216196/ /pubmed/2783728 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Excitation of skinned muscle fibers by imposed ion gradients. III. Distribution of permeant ions in unstimulated and stimulated fibers
title Excitation of skinned muscle fibers by imposed ion gradients. III. Distribution of permeant ions in unstimulated and stimulated fibers
title_full Excitation of skinned muscle fibers by imposed ion gradients. III. Distribution of permeant ions in unstimulated and stimulated fibers
title_fullStr Excitation of skinned muscle fibers by imposed ion gradients. III. Distribution of permeant ions in unstimulated and stimulated fibers
title_full_unstemmed Excitation of skinned muscle fibers by imposed ion gradients. III. Distribution of permeant ions in unstimulated and stimulated fibers
title_short Excitation of skinned muscle fibers by imposed ion gradients. III. Distribution of permeant ions in unstimulated and stimulated fibers
title_sort excitation of skinned muscle fibers by imposed ion gradients. iii. distribution of permeant ions in unstimulated and stimulated fibers
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216196/
https://www.ncbi.nlm.nih.gov/pubmed/2783728