Cargando…

Excitation of skinned muscle fibers by imposed ion gradients. IV. Effects of stretch and perchlorate ion

Depolarizing ion gradients stimulate 45Ca release in skeletal muscle fibers skinned by microdissection. Several lines of indirect evidence suggest that sealed transverse (T) tubules rather than sarcoplasmic reticulum (SR) are the locus of such stimulatory depolarization. Two implications of this hyp...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1989
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216197/
https://www.ncbi.nlm.nih.gov/pubmed/2536796
_version_ 1782149117644898304
collection PubMed
description Depolarizing ion gradients stimulate 45Ca release in skeletal muscle fibers skinned by microdissection. Several lines of indirect evidence suggest that sealed transverse (T) tubules rather than sarcoplasmic reticulum (SR) are the locus of such stimulatory depolarization. Two implications of this hypothesis were tested. (a) A requirement for signal transmission was evaluated from the stimulation of 45Ca efflux in fibers that had been highly stretched, an intervention that can impair the electrical stimulation of intact fibers. Length was increased over approximately 95-115 s, after loading with 45Ca and rinsing at normal length; prestimulus 45Ca loss due to stretch itself was very small. In the first study, stimulation of 45Ca release by KCl replacement of K propionate was inhibited completely in fibers stretched to twice slack length, compared with fibers at 1.05-1.1 times slack length. Identical protocols did not alter 45Ca release stimulated by caffeine or Mg2+ reduction, implying that SR Ca release per se was fully functional and inhibition was selective for a preceding step in ionic stimulation. In a second study, stimulation by choline Cl replacement of K methanesulfonate, at constant [K+] [Cl-] product, was inhibited strongly; total 45Ca release decreased 69%, and stimulation above control loss decreased 78%, in segments stretched to twice the length at which sarcomere spacing had been 2.2 micron, compared with paired controls from the same fibers kept at 2.3 micron. (b) Perchlorate potentiation of T tubule activation was evaluated in fibers stimulated at constant [K+] [Cl-] at normal length (2.3 micron); this anion shifts the voltage dependence of intramembrane charge movement and contractile activation in intact fibers. Perchlorate (8 mM) potentiated both submaximal stimulation of Ca2+-dependent 45Ca release by partial choline Cl replacement of K methanesulfonate and the small Ca2+-insensitive 45Ca efflux component stimulated by nearly full replacement in the presence of 5 mM EGTA. These results provide independent support for the hypothesis that the T tubules are the locus of stimulation by depolarizing ion gradients, with junctional transmission of this signal causing SR 45Ca release.
format Text
id pubmed-2216197
institution National Center for Biotechnology Information
language English
publishDate 1989
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22161972008-04-23 Excitation of skinned muscle fibers by imposed ion gradients. IV. Effects of stretch and perchlorate ion J Gen Physiol Articles Depolarizing ion gradients stimulate 45Ca release in skeletal muscle fibers skinned by microdissection. Several lines of indirect evidence suggest that sealed transverse (T) tubules rather than sarcoplasmic reticulum (SR) are the locus of such stimulatory depolarization. Two implications of this hypothesis were tested. (a) A requirement for signal transmission was evaluated from the stimulation of 45Ca efflux in fibers that had been highly stretched, an intervention that can impair the electrical stimulation of intact fibers. Length was increased over approximately 95-115 s, after loading with 45Ca and rinsing at normal length; prestimulus 45Ca loss due to stretch itself was very small. In the first study, stimulation of 45Ca release by KCl replacement of K propionate was inhibited completely in fibers stretched to twice slack length, compared with fibers at 1.05-1.1 times slack length. Identical protocols did not alter 45Ca release stimulated by caffeine or Mg2+ reduction, implying that SR Ca release per se was fully functional and inhibition was selective for a preceding step in ionic stimulation. In a second study, stimulation by choline Cl replacement of K methanesulfonate, at constant [K+] [Cl-] product, was inhibited strongly; total 45Ca release decreased 69%, and stimulation above control loss decreased 78%, in segments stretched to twice the length at which sarcomere spacing had been 2.2 micron, compared with paired controls from the same fibers kept at 2.3 micron. (b) Perchlorate potentiation of T tubule activation was evaluated in fibers stimulated at constant [K+] [Cl-] at normal length (2.3 micron); this anion shifts the voltage dependence of intramembrane charge movement and contractile activation in intact fibers. Perchlorate (8 mM) potentiated both submaximal stimulation of Ca2+-dependent 45Ca release by partial choline Cl replacement of K methanesulfonate and the small Ca2+-insensitive 45Ca efflux component stimulated by nearly full replacement in the presence of 5 mM EGTA. These results provide independent support for the hypothesis that the T tubules are the locus of stimulation by depolarizing ion gradients, with junctional transmission of this signal causing SR 45Ca release. The Rockefeller University Press 1989-01-01 /pmc/articles/PMC2216197/ /pubmed/2536796 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Excitation of skinned muscle fibers by imposed ion gradients. IV. Effects of stretch and perchlorate ion
title Excitation of skinned muscle fibers by imposed ion gradients. IV. Effects of stretch and perchlorate ion
title_full Excitation of skinned muscle fibers by imposed ion gradients. IV. Effects of stretch and perchlorate ion
title_fullStr Excitation of skinned muscle fibers by imposed ion gradients. IV. Effects of stretch and perchlorate ion
title_full_unstemmed Excitation of skinned muscle fibers by imposed ion gradients. IV. Effects of stretch and perchlorate ion
title_short Excitation of skinned muscle fibers by imposed ion gradients. IV. Effects of stretch and perchlorate ion
title_sort excitation of skinned muscle fibers by imposed ion gradients. iv. effects of stretch and perchlorate ion
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216197/
https://www.ncbi.nlm.nih.gov/pubmed/2536796