Cargando…

Rapid and slow gating of veratridine-modified sodium channels in frog myelinated nerve

The properties of voltage-dependent Na channels modified by veratridine (VTD) were studied in voltage-clamped nodes of Ranvier of the frog Rana pipiens. Two modes of gating of VTD-modified channels are described. The first, occurring on a time scale of milliseconds, is shown to be the transition of...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1989
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216201/
https://www.ncbi.nlm.nih.gov/pubmed/2536798
Descripción
Sumario:The properties of voltage-dependent Na channels modified by veratridine (VTD) were studied in voltage-clamped nodes of Ranvier of the frog Rana pipiens. Two modes of gating of VTD-modified channels are described. The first, occurring on a time scale of milliseconds, is shown to be the transition of channels between a modified resting state and a modified open state. There are important qualitative and quantitative differences of this gating process in nerve compared with that in muscle (Leibowitz et al., 1986). A second gating process occurring on a time scale of seconds, was originally described as a modified activation process (Ulbricht, 1969). This process is further analyzed here, and a model is presented in which the slow process represents the gating of VTD-modified channels between open and inactivated states. An expanded model is a step in the direction of unifying the known rapid and slow physiologic processes of Na channels modified by VTD and related alkaloid neurotoxins.