Cargando…

Measurement of the effective thickness of the mucosal unstirred layer in Necturus gallbladder epithelium

The effective thickness of the unstirred fluid layer (USL) adjacent to an epithelial barrier can be estimated from the time course for the accumulation or depletion of a solute at the membrane surface. In 1985 we reported an unstirred layer thickness of approximately 70 microns for Necturus gallblad...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1989
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216228/
https://www.ncbi.nlm.nih.gov/pubmed/2732677
_version_ 1782149124930404352
collection PubMed
description The effective thickness of the unstirred fluid layer (USL) adjacent to an epithelial barrier can be estimated from the time course for the accumulation or depletion of a solute at the membrane surface. In 1985 we reported an unstirred layer thickness of approximately 70 microns for Necturus gallbladder epithelium. In our earlier studies the delay caused by noninstantaneous bulk solution mixing was not taken into account and thus the USL thickness was systematically overestimated. In the present studies we describe an analysis of the time course of solute arrival at the membrane surface that takes into account noninstantaneous bulk solution mixing. We also describe a simple technique to monitor the accumulation or depletion of a solute at the membrane surface. The time course for the change in the concentration of either tetramethylammonium (TMA+) or tetrabutylammonium (TBA+) upon elevation of bulk solution concentration is sensed at the membrane surface with an ion-sensitive microelectrode. Because of the high selectivity of the ion-sensitive resin for TMA+ or TBA+ over other monovalent cations in the solution (Na+ and K+), a low concentration (1- 2 mM) of the probe can be used. By measuring the time course of the arrival of first one probe and then the other, under identical superfusion conditions, sufficient information is obtained to eliminate multiple fits to the data, obtained when only one probe is used. Neglecting bulk solution mixing caused an error greater than 50% in estimated apparent USL thickness. The effective thickness of the USL depends critically upon chamber geometry, flow rate, and the position of superfusion and suction pipettes. Under our experimental conditions the effective USL at the mucosal surface of Necturus gallbladder epithelium was approximately 40 microns.
format Text
id pubmed-2216228
institution National Center for Biotechnology Information
language English
publishDate 1989
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22162282008-04-23 Measurement of the effective thickness of the mucosal unstirred layer in Necturus gallbladder epithelium J Gen Physiol Articles The effective thickness of the unstirred fluid layer (USL) adjacent to an epithelial barrier can be estimated from the time course for the accumulation or depletion of a solute at the membrane surface. In 1985 we reported an unstirred layer thickness of approximately 70 microns for Necturus gallbladder epithelium. In our earlier studies the delay caused by noninstantaneous bulk solution mixing was not taken into account and thus the USL thickness was systematically overestimated. In the present studies we describe an analysis of the time course of solute arrival at the membrane surface that takes into account noninstantaneous bulk solution mixing. We also describe a simple technique to monitor the accumulation or depletion of a solute at the membrane surface. The time course for the change in the concentration of either tetramethylammonium (TMA+) or tetrabutylammonium (TBA+) upon elevation of bulk solution concentration is sensed at the membrane surface with an ion-sensitive microelectrode. Because of the high selectivity of the ion-sensitive resin for TMA+ or TBA+ over other monovalent cations in the solution (Na+ and K+), a low concentration (1- 2 mM) of the probe can be used. By measuring the time course of the arrival of first one probe and then the other, under identical superfusion conditions, sufficient information is obtained to eliminate multiple fits to the data, obtained when only one probe is used. Neglecting bulk solution mixing caused an error greater than 50% in estimated apparent USL thickness. The effective thickness of the USL depends critically upon chamber geometry, flow rate, and the position of superfusion and suction pipettes. Under our experimental conditions the effective USL at the mucosal surface of Necturus gallbladder epithelium was approximately 40 microns. The Rockefeller University Press 1989-04-01 /pmc/articles/PMC2216228/ /pubmed/2732677 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Measurement of the effective thickness of the mucosal unstirred layer in Necturus gallbladder epithelium
title Measurement of the effective thickness of the mucosal unstirred layer in Necturus gallbladder epithelium
title_full Measurement of the effective thickness of the mucosal unstirred layer in Necturus gallbladder epithelium
title_fullStr Measurement of the effective thickness of the mucosal unstirred layer in Necturus gallbladder epithelium
title_full_unstemmed Measurement of the effective thickness of the mucosal unstirred layer in Necturus gallbladder epithelium
title_short Measurement of the effective thickness of the mucosal unstirred layer in Necturus gallbladder epithelium
title_sort measurement of the effective thickness of the mucosal unstirred layer in necturus gallbladder epithelium
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216228/
https://www.ncbi.nlm.nih.gov/pubmed/2732677