Cargando…

Variations in cross-bridge attachment rate and tension with phosphorylation of myosin in mammalian skinned skeletal muscle fibers. Implications for twitch potentiation in intact muscle

The Ca2+ sensitivities of the rate constant of tension redevelopment (ktr; Brenner, B., and E. Eisenberg. 1986. Proceedings of the National Academy of Sciences. 83:3542-3546) and isometric force during steady- state activation were examined as functions of myosin light chain 2 (LC2) phosphorylation...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1989
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216237/
https://www.ncbi.nlm.nih.gov/pubmed/2661721
_version_ 1782149127078936576
collection PubMed
description The Ca2+ sensitivities of the rate constant of tension redevelopment (ktr; Brenner, B., and E. Eisenberg. 1986. Proceedings of the National Academy of Sciences. 83:3542-3546) and isometric force during steady- state activation were examined as functions of myosin light chain 2 (LC2) phosphorylation in skinned single fibers from rabbit and rat fast- twitch skeletal muscles. To measure ktr the fiber was activated with Ca2+ and steady isometric tension was allowed to develop; subsequently, the fiber was rapidly (less than 1 ms) released to a shorter length and then reextended by approximately 200 nm per half sarcomere. This maneuver resulted in the complete dissociation of cross-bridges from actin, so that the subsequent redevelopment of tension was related to the rate of cross-bridge reattachment. The time course of tension redevelopment, which was recorded under sarcomere length control, was best fit by a first-order exponential equation (i.e., tension = C(1 - e- kt) to obtain the value of ktr. In control fibers, ktr increased sigmoidally with increases in [Ca2+]; maximum values of ktr were obtained at pCa 4.5 and were significantly greater in rat superficial vastus lateralis fibers (26.1 +/- 1.2 s-1 at 15 degrees C) than in rabbit psoas fibers (18.7 +/- 1.0 s-1). Phosphorylation of LC2 was accomplished by repeated Ca2+ activations (pCa 4.5) of the fibers in solutions containing 6 microM calmodulin and 0.5 microM myosin light chain kinase, a protocol that resulted in an increase in LC2 phosphorylation from approximately 10% in the control fibers to greater than 80% after treatment. After phosphorylation, ktr was unchanged at maximum or very low levels of Ca2+ activation. However, at intermediate levels of Ca2+ activation, between pCa 5.5 and 6.2, there was a significant increase in ktr such that this portion of the ktr-pCa relationship was shifted to the left. The steady-state isometric tension-pCa relationship, which in control fibers was left shifted with respect to the ktr-pCa relationship, was further left-shifted after LC2 phosphorylation. Phosphorylation of LC2 had no effect upon steady-state tension during maximum Ca2+ activation. In fibers from which troponin C was partially extracted to disrupt molecular cooperativity within the thin filament (Moss et al. 1985. Journal of General Physiology. 86:585- 600), the effect of LC2 phosphorylation to increase the Ca2+ sensitivity of steady-state isometric force was no longer evident, although the effect of phosphorylation to increase ktr was unaffected by this maneuver.(ABSTRACT TRUNCATED AT 400 WORDS)
format Text
id pubmed-2216237
institution National Center for Biotechnology Information
language English
publishDate 1989
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22162372008-04-23 Variations in cross-bridge attachment rate and tension with phosphorylation of myosin in mammalian skinned skeletal muscle fibers. Implications for twitch potentiation in intact muscle J Gen Physiol Articles The Ca2+ sensitivities of the rate constant of tension redevelopment (ktr; Brenner, B., and E. Eisenberg. 1986. Proceedings of the National Academy of Sciences. 83:3542-3546) and isometric force during steady- state activation were examined as functions of myosin light chain 2 (LC2) phosphorylation in skinned single fibers from rabbit and rat fast- twitch skeletal muscles. To measure ktr the fiber was activated with Ca2+ and steady isometric tension was allowed to develop; subsequently, the fiber was rapidly (less than 1 ms) released to a shorter length and then reextended by approximately 200 nm per half sarcomere. This maneuver resulted in the complete dissociation of cross-bridges from actin, so that the subsequent redevelopment of tension was related to the rate of cross-bridge reattachment. The time course of tension redevelopment, which was recorded under sarcomere length control, was best fit by a first-order exponential equation (i.e., tension = C(1 - e- kt) to obtain the value of ktr. In control fibers, ktr increased sigmoidally with increases in [Ca2+]; maximum values of ktr were obtained at pCa 4.5 and were significantly greater in rat superficial vastus lateralis fibers (26.1 +/- 1.2 s-1 at 15 degrees C) than in rabbit psoas fibers (18.7 +/- 1.0 s-1). Phosphorylation of LC2 was accomplished by repeated Ca2+ activations (pCa 4.5) of the fibers in solutions containing 6 microM calmodulin and 0.5 microM myosin light chain kinase, a protocol that resulted in an increase in LC2 phosphorylation from approximately 10% in the control fibers to greater than 80% after treatment. After phosphorylation, ktr was unchanged at maximum or very low levels of Ca2+ activation. However, at intermediate levels of Ca2+ activation, between pCa 5.5 and 6.2, there was a significant increase in ktr such that this portion of the ktr-pCa relationship was shifted to the left. The steady-state isometric tension-pCa relationship, which in control fibers was left shifted with respect to the ktr-pCa relationship, was further left-shifted after LC2 phosphorylation. Phosphorylation of LC2 had no effect upon steady-state tension during maximum Ca2+ activation. In fibers from which troponin C was partially extracted to disrupt molecular cooperativity within the thin filament (Moss et al. 1985. Journal of General Physiology. 86:585- 600), the effect of LC2 phosphorylation to increase the Ca2+ sensitivity of steady-state isometric force was no longer evident, although the effect of phosphorylation to increase ktr was unaffected by this maneuver.(ABSTRACT TRUNCATED AT 400 WORDS) The Rockefeller University Press 1989-05-01 /pmc/articles/PMC2216237/ /pubmed/2661721 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Variations in cross-bridge attachment rate and tension with phosphorylation of myosin in mammalian skinned skeletal muscle fibers. Implications for twitch potentiation in intact muscle
title Variations in cross-bridge attachment rate and tension with phosphorylation of myosin in mammalian skinned skeletal muscle fibers. Implications for twitch potentiation in intact muscle
title_full Variations in cross-bridge attachment rate and tension with phosphorylation of myosin in mammalian skinned skeletal muscle fibers. Implications for twitch potentiation in intact muscle
title_fullStr Variations in cross-bridge attachment rate and tension with phosphorylation of myosin in mammalian skinned skeletal muscle fibers. Implications for twitch potentiation in intact muscle
title_full_unstemmed Variations in cross-bridge attachment rate and tension with phosphorylation of myosin in mammalian skinned skeletal muscle fibers. Implications for twitch potentiation in intact muscle
title_short Variations in cross-bridge attachment rate and tension with phosphorylation of myosin in mammalian skinned skeletal muscle fibers. Implications for twitch potentiation in intact muscle
title_sort variations in cross-bridge attachment rate and tension with phosphorylation of myosin in mammalian skinned skeletal muscle fibers. implications for twitch potentiation in intact muscle
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216237/
https://www.ncbi.nlm.nih.gov/pubmed/2661721