Cargando…

Charybdotoxin blocks voltage-gated K+ channels in human and murine T lymphocytes

A variety of scorpion venoms and purified toxins were tested for effects on ion channels in human T lymphocytes, a human T leukemia cell line (Jurkat), and murine thymocytes, using the whole-cell patch-clamp method. Nanomolar concentrations of charbdotoxin (CTX), a purified peptide component of Leiu...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1989
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216250/
https://www.ncbi.nlm.nih.gov/pubmed/2475579
_version_ 1782149130172235776
collection PubMed
description A variety of scorpion venoms and purified toxins were tested for effects on ion channels in human T lymphocytes, a human T leukemia cell line (Jurkat), and murine thymocytes, using the whole-cell patch-clamp method. Nanomolar concentrations of charbdotoxin (CTX), a purified peptide component of Leiurus quinquestriatus venom known to block Ca2+- activated K+ channels from muscle, blocked "type n" voltage-gated K+ channels in human T lymphoid cells. The Na+ channels occasionally expressed in these cells were unaffected by the toxin. From the time course of development and removal of K+ channel block we determined the rates of CTX binding and unbinding. CTX blocks K+ channels in Jurkat cells with a Kd value between 0.5 and 1.5 nM. Of the three types of voltage-gated K+ channels present in murine thymocytes, types n and n' are blocked by CTX at nanomolar concentrations. The third variety of K+ channels, "type l," is unaffected by CTX. Noxiustoxin (NTX), a purified toxin from Centruroides noxius known to block Ca2+-activated K+ channels, also blocked type n K+ channels with a high degree of potency (Kd = 0.2 nM). In addition, several types of crude scorpion venoms from the genera Androctonus, Buthus, Centruroides, and Pandinus blocked type n channels. We conclude that CTX and NTX are not specific for Ca2+ activated K+ channels and that purified scorpion toxins will provide useful probes of voltage-gated K+ channels in T lymphocytes. The existence of high-affinity sites for scorpion toxin binding may help to classify structurally related K+ channels and provide a useful tool for their biochemical purification.
format Text
id pubmed-2216250
institution National Center for Biotechnology Information
language English
publishDate 1989
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22162502008-04-23 Charybdotoxin blocks voltage-gated K+ channels in human and murine T lymphocytes J Gen Physiol Articles A variety of scorpion venoms and purified toxins were tested for effects on ion channels in human T lymphocytes, a human T leukemia cell line (Jurkat), and murine thymocytes, using the whole-cell patch-clamp method. Nanomolar concentrations of charbdotoxin (CTX), a purified peptide component of Leiurus quinquestriatus venom known to block Ca2+- activated K+ channels from muscle, blocked "type n" voltage-gated K+ channels in human T lymphoid cells. The Na+ channels occasionally expressed in these cells were unaffected by the toxin. From the time course of development and removal of K+ channel block we determined the rates of CTX binding and unbinding. CTX blocks K+ channels in Jurkat cells with a Kd value between 0.5 and 1.5 nM. Of the three types of voltage-gated K+ channels present in murine thymocytes, types n and n' are blocked by CTX at nanomolar concentrations. The third variety of K+ channels, "type l," is unaffected by CTX. Noxiustoxin (NTX), a purified toxin from Centruroides noxius known to block Ca2+-activated K+ channels, also blocked type n K+ channels with a high degree of potency (Kd = 0.2 nM). In addition, several types of crude scorpion venoms from the genera Androctonus, Buthus, Centruroides, and Pandinus blocked type n channels. We conclude that CTX and NTX are not specific for Ca2+ activated K+ channels and that purified scorpion toxins will provide useful probes of voltage-gated K+ channels in T lymphocytes. The existence of high-affinity sites for scorpion toxin binding may help to classify structurally related K+ channels and provide a useful tool for their biochemical purification. The Rockefeller University Press 1989-06-01 /pmc/articles/PMC2216250/ /pubmed/2475579 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Charybdotoxin blocks voltage-gated K+ channels in human and murine T lymphocytes
title Charybdotoxin blocks voltage-gated K+ channels in human and murine T lymphocytes
title_full Charybdotoxin blocks voltage-gated K+ channels in human and murine T lymphocytes
title_fullStr Charybdotoxin blocks voltage-gated K+ channels in human and murine T lymphocytes
title_full_unstemmed Charybdotoxin blocks voltage-gated K+ channels in human and murine T lymphocytes
title_short Charybdotoxin blocks voltage-gated K+ channels in human and murine T lymphocytes
title_sort charybdotoxin blocks voltage-gated k+ channels in human and murine t lymphocytes
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216250/
https://www.ncbi.nlm.nih.gov/pubmed/2475579