Cargando…
Apical membrane Na+/H+ exchange in Necturus gallbladder epithelium. Its dependence on extracellular and intracellular pH and on external Na+ concentration
Intracellular microelectrode techniques and extracellular pH measurements were used to study the dependence of apical Na+/H+ exchange on mucosal and intracellular pH and on mucosal solution Na+ concentration ([Na+]o). When mucosal solution pH (pHo) was decreased in gallbladders bathed in Na(+)-conta...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1990
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216320/ https://www.ncbi.nlm.nih.gov/pubmed/2307961 |
_version_ | 1782149134113832960 |
---|---|
collection | PubMed |
description | Intracellular microelectrode techniques and extracellular pH measurements were used to study the dependence of apical Na+/H+ exchange on mucosal and intracellular pH and on mucosal solution Na+ concentration ([Na+]o). When mucosal solution pH (pHo) was decreased in gallbladders bathed in Na(+)-containing solutions, aNai fell. The effect of pHo is consistent with titration of a single site with an apparent pK of 6.29. In Na(+)-depleted tissues, increasing [Na+]o from 0 to values ranging from 2.5 to 110 mM increased aNai; the relationship was well described by Michaelis-Menten kinetics. The apparent Km was 15 mM at pHo 7.5 and increased to 134 mM at pHo 6.5, without change in Vmax. In Na(+)-depleted gallbladders, elevating [Na+]o from 0 to 25 mM increased aNai and pHi and caused acidification of a poorly buffered mucosal solution upon stopping the superfusion; lowering pHo inhibited both apical Na+ entry and mucosal solution acidification. Both effects can be ascribed to titration of a single site; the apparent pK's were 7.2 and 7.4, respectively. Diethylpyrocarbonate (DEPC), a histidine- specific reagent, reduced mucosal acidification by 58 +/- 4 or 39 +/- 6% when exposure to the drug was at pHo 7.5 or 6.5, respectively. Amiloride (1 mM) did not protect against the DEPC inhibition, but reduced both apical Na+ entry and mucosal acidification by 63 +/- 5 and 65 +/- 9%, respectively. In the Na(+)-depleted tissues mean pHi was 6.7. Cells were alkalinized by exposure to mucosal solutions containing high concentrations of nicotine or methylamine. Estimates of apical Na+ entry at varying pHi, upon increasing [Na+]o from 0 to 25 mM, indicate that Na+/H+ exchange is active at pHi 7.4. Intracellular H+ stimulated apical Na+ entry by titration of more than one site (apparent pK 7.1, Hill coefficient 1.7). The results suggest that external Na+ and H+ interact with one site of the Na+/H+ exchanger and that cytoplasmic H+ acts on at least two sites. The external titratable group seems to be an imidazolium, which is apparently different from the amiloride- binding site. The dependence of Na+ entry on pHi supports the notion that the Na+/H+ exchanger is operational under normal transport conditions. |
format | Text |
id | pubmed-2216320 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1990 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22163202008-04-23 Apical membrane Na+/H+ exchange in Necturus gallbladder epithelium. Its dependence on extracellular and intracellular pH and on external Na+ concentration J Gen Physiol Articles Intracellular microelectrode techniques and extracellular pH measurements were used to study the dependence of apical Na+/H+ exchange on mucosal and intracellular pH and on mucosal solution Na+ concentration ([Na+]o). When mucosal solution pH (pHo) was decreased in gallbladders bathed in Na(+)-containing solutions, aNai fell. The effect of pHo is consistent with titration of a single site with an apparent pK of 6.29. In Na(+)-depleted tissues, increasing [Na+]o from 0 to values ranging from 2.5 to 110 mM increased aNai; the relationship was well described by Michaelis-Menten kinetics. The apparent Km was 15 mM at pHo 7.5 and increased to 134 mM at pHo 6.5, without change in Vmax. In Na(+)-depleted gallbladders, elevating [Na+]o from 0 to 25 mM increased aNai and pHi and caused acidification of a poorly buffered mucosal solution upon stopping the superfusion; lowering pHo inhibited both apical Na+ entry and mucosal solution acidification. Both effects can be ascribed to titration of a single site; the apparent pK's were 7.2 and 7.4, respectively. Diethylpyrocarbonate (DEPC), a histidine- specific reagent, reduced mucosal acidification by 58 +/- 4 or 39 +/- 6% when exposure to the drug was at pHo 7.5 or 6.5, respectively. Amiloride (1 mM) did not protect against the DEPC inhibition, but reduced both apical Na+ entry and mucosal acidification by 63 +/- 5 and 65 +/- 9%, respectively. In the Na(+)-depleted tissues mean pHi was 6.7. Cells were alkalinized by exposure to mucosal solutions containing high concentrations of nicotine or methylamine. Estimates of apical Na+ entry at varying pHi, upon increasing [Na+]o from 0 to 25 mM, indicate that Na+/H+ exchange is active at pHi 7.4. Intracellular H+ stimulated apical Na+ entry by titration of more than one site (apparent pK 7.1, Hill coefficient 1.7). The results suggest that external Na+ and H+ interact with one site of the Na+/H+ exchanger and that cytoplasmic H+ acts on at least two sites. The external titratable group seems to be an imidazolium, which is apparently different from the amiloride- binding site. The dependence of Na+ entry on pHi supports the notion that the Na+/H+ exchanger is operational under normal transport conditions. The Rockefeller University Press 1990-02-01 /pmc/articles/PMC2216320/ /pubmed/2307961 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Apical membrane Na+/H+ exchange in Necturus gallbladder epithelium. Its dependence on extracellular and intracellular pH and on external Na+ concentration |
title | Apical membrane Na+/H+ exchange in Necturus gallbladder epithelium. Its dependence on extracellular and intracellular pH and on external Na+ concentration |
title_full | Apical membrane Na+/H+ exchange in Necturus gallbladder epithelium. Its dependence on extracellular and intracellular pH and on external Na+ concentration |
title_fullStr | Apical membrane Na+/H+ exchange in Necturus gallbladder epithelium. Its dependence on extracellular and intracellular pH and on external Na+ concentration |
title_full_unstemmed | Apical membrane Na+/H+ exchange in Necturus gallbladder epithelium. Its dependence on extracellular and intracellular pH and on external Na+ concentration |
title_short | Apical membrane Na+/H+ exchange in Necturus gallbladder epithelium. Its dependence on extracellular and intracellular pH and on external Na+ concentration |
title_sort | apical membrane na+/h+ exchange in necturus gallbladder epithelium. its dependence on extracellular and intracellular ph and on external na+ concentration |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216320/ https://www.ncbi.nlm.nih.gov/pubmed/2307961 |