Cargando…

Ca2+ channels from the sea urchin sperm plasma membrane

Ca2+ influx across the sea urchin sperm plasma membrane is a necessary step during the egg jelly-induced acrosome reaction. There is pharmacological evidence for the involvement of Ca2+ channels in this influx, but their presence has not been directly demonstrated because of the small size of this c...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1990
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216321/
https://www.ncbi.nlm.nih.gov/pubmed/2155281
_version_ 1782149134344519680
collection PubMed
description Ca2+ influx across the sea urchin sperm plasma membrane is a necessary step during the egg jelly-induced acrosome reaction. There is pharmacological evidence for the involvement of Ca2+ channels in this influx, but their presence has not been directly demonstrated because of the small size of this cell. Sea urchin sperm Ca2+ channels are being studied by fusing isolated plasma membranes into planar lipid bilayers. With this strategy, a Ca2+ channel has been detected with the following characteristics: (a) the channel exhibits a high mainstate conductance (gamma MS) of 172 pS in 50 mM CaCl2 solutions with voltage- dependent decaying to smaller conductance states at negative Em; (b) the channel is blocked by millimolar concentrations of Cd2+, Co2+, and La3+, which also inhibit the egg jelly-induced acrosome reaction; (c) the gamma MS conductance sequence for the tested divalent cations is the following: Ba2+ greater than Sr2+ greater than Ca2+; and (d) the channel discriminates poorly for divalent over monovalent cations (PCa/PNa = 5.9). The sperm Ca2+ channel gamma MS rectifies in symmetrical 10 mM CaCl2, having a maximal slope conductance value of 94 pS at +100 mV applied to the cis side of the bilayer. Under these conditions, a different single-channel activity of lesser conductance became apparent above the gamma MS current at positive membrane potentials. Also in 10 mM Ca2+ solutions, Mg2+ permeates through the main channel when added to the cis side with a PCa/PMg = 2.9, while it blocks when added to the trans side. In 50 mM Ca2+ solutions, the gamma MS open probability has values of 1.0 at voltages more positive than - 40 mV and decreases at more negatives potentials, following a Boltzmann function with an E0.5 = -72 mV and an apparent gating charge value of 3.9. These results describe a novel Ca2(+)-selective channel, and suggest that the main channel works as a single multipore assembly.
format Text
id pubmed-2216321
institution National Center for Biotechnology Information
language English
publishDate 1990
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22163212008-04-23 Ca2+ channels from the sea urchin sperm plasma membrane J Gen Physiol Articles Ca2+ influx across the sea urchin sperm plasma membrane is a necessary step during the egg jelly-induced acrosome reaction. There is pharmacological evidence for the involvement of Ca2+ channels in this influx, but their presence has not been directly demonstrated because of the small size of this cell. Sea urchin sperm Ca2+ channels are being studied by fusing isolated plasma membranes into planar lipid bilayers. With this strategy, a Ca2+ channel has been detected with the following characteristics: (a) the channel exhibits a high mainstate conductance (gamma MS) of 172 pS in 50 mM CaCl2 solutions with voltage- dependent decaying to smaller conductance states at negative Em; (b) the channel is blocked by millimolar concentrations of Cd2+, Co2+, and La3+, which also inhibit the egg jelly-induced acrosome reaction; (c) the gamma MS conductance sequence for the tested divalent cations is the following: Ba2+ greater than Sr2+ greater than Ca2+; and (d) the channel discriminates poorly for divalent over monovalent cations (PCa/PNa = 5.9). The sperm Ca2+ channel gamma MS rectifies in symmetrical 10 mM CaCl2, having a maximal slope conductance value of 94 pS at +100 mV applied to the cis side of the bilayer. Under these conditions, a different single-channel activity of lesser conductance became apparent above the gamma MS current at positive membrane potentials. Also in 10 mM Ca2+ solutions, Mg2+ permeates through the main channel when added to the cis side with a PCa/PMg = 2.9, while it blocks when added to the trans side. In 50 mM Ca2+ solutions, the gamma MS open probability has values of 1.0 at voltages more positive than - 40 mV and decreases at more negatives potentials, following a Boltzmann function with an E0.5 = -72 mV and an apparent gating charge value of 3.9. These results describe a novel Ca2(+)-selective channel, and suggest that the main channel works as a single multipore assembly. The Rockefeller University Press 1990-02-01 /pmc/articles/PMC2216321/ /pubmed/2155281 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Ca2+ channels from the sea urchin sperm plasma membrane
title Ca2+ channels from the sea urchin sperm plasma membrane
title_full Ca2+ channels from the sea urchin sperm plasma membrane
title_fullStr Ca2+ channels from the sea urchin sperm plasma membrane
title_full_unstemmed Ca2+ channels from the sea urchin sperm plasma membrane
title_short Ca2+ channels from the sea urchin sperm plasma membrane
title_sort ca2+ channels from the sea urchin sperm plasma membrane
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216321/
https://www.ncbi.nlm.nih.gov/pubmed/2155281