Cargando…

Weber and noise adaptation in the retina of the toad Bufo marinus

Responses to flashes and steps of light were recorded intracellularly from rods and horizontal cells, and extracellularly from ganglion cells, in toad eyecups which were either dark adapted or exposed to various levels of background light. The average background intensities needed to depress the dar...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1990
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216330/
https://www.ncbi.nlm.nih.gov/pubmed/2110969
_version_ 1782149136522412032
collection PubMed
description Responses to flashes and steps of light were recorded intracellularly from rods and horizontal cells, and extracellularly from ganglion cells, in toad eyecups which were either dark adapted or exposed to various levels of background light. The average background intensities needed to depress the dark-adapted flash sensitivity by half in the three cell types, determined under identical conditions, were 0.9 Rh*s- 1 (rods), 0.8 Rh*s-1 (horizontal cells), and 0.17 Rh*s-1 (ganglion cells), where Rh* denotes one isomerization per rod. Thus, there is a range (approximately 0.7 log units) of weak backgrounds where the sensitivity (response amplitude/Rh*) of rods is not significantly affected, but where that of ganglion cells (1/threshold) is substantially reduced, which implies that the gain of the transmission from rods to the ganglion cell output is decreased. In this range, the ganglion cell threshold rises approximately as the square root of background intensity (i.e. in proportion to the quantal noise from the background), while the maintained rate of discharge stays constant. The threshold response of the cell will then signal light deviations (from a mean level) of constant statistical significance. We propose that this type of ganglion cell desensitization under dim backgrounds is due to a post-receptoral gain control driven by quantal fluctuations, and term it noise adaptation in contrast to the Weber adaptation (desensitization proportional to the mean background intensity) of rods, horizontal cells, and ganglion cells at higher background intensities.
format Text
id pubmed-2216330
institution National Center for Biotechnology Information
language English
publishDate 1990
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22163302008-04-23 Weber and noise adaptation in the retina of the toad Bufo marinus J Gen Physiol Articles Responses to flashes and steps of light were recorded intracellularly from rods and horizontal cells, and extracellularly from ganglion cells, in toad eyecups which were either dark adapted or exposed to various levels of background light. The average background intensities needed to depress the dark-adapted flash sensitivity by half in the three cell types, determined under identical conditions, were 0.9 Rh*s- 1 (rods), 0.8 Rh*s-1 (horizontal cells), and 0.17 Rh*s-1 (ganglion cells), where Rh* denotes one isomerization per rod. Thus, there is a range (approximately 0.7 log units) of weak backgrounds where the sensitivity (response amplitude/Rh*) of rods is not significantly affected, but where that of ganglion cells (1/threshold) is substantially reduced, which implies that the gain of the transmission from rods to the ganglion cell output is decreased. In this range, the ganglion cell threshold rises approximately as the square root of background intensity (i.e. in proportion to the quantal noise from the background), while the maintained rate of discharge stays constant. The threshold response of the cell will then signal light deviations (from a mean level) of constant statistical significance. We propose that this type of ganglion cell desensitization under dim backgrounds is due to a post-receptoral gain control driven by quantal fluctuations, and term it noise adaptation in contrast to the Weber adaptation (desensitization proportional to the mean background intensity) of rods, horizontal cells, and ganglion cells at higher background intensities. The Rockefeller University Press 1990-04-01 /pmc/articles/PMC2216330/ /pubmed/2110969 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Weber and noise adaptation in the retina of the toad Bufo marinus
title Weber and noise adaptation in the retina of the toad Bufo marinus
title_full Weber and noise adaptation in the retina of the toad Bufo marinus
title_fullStr Weber and noise adaptation in the retina of the toad Bufo marinus
title_full_unstemmed Weber and noise adaptation in the retina of the toad Bufo marinus
title_short Weber and noise adaptation in the retina of the toad Bufo marinus
title_sort weber and noise adaptation in the retina of the toad bufo marinus
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216330/
https://www.ncbi.nlm.nih.gov/pubmed/2110969