Cargando…

Potassium channel block by internal calcium and strontium

We show that intracellular Ca blocks current flow through open K channels in squid giant fiber lobe neurons. The block has similarities to internal Sr block of K channels in squid axons, which we have reexamined. Both ions must cross a high energy barrier to enter the blocking site from the inside,...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1991
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216480/
https://www.ncbi.nlm.nih.gov/pubmed/2037841
Descripción
Sumario:We show that intracellular Ca blocks current flow through open K channels in squid giant fiber lobe neurons. The block has similarities to internal Sr block of K channels in squid axons, which we have reexamined. Both ions must cross a high energy barrier to enter the blocking site from the inside, and block occurs only with millimolar concentrations and with strong depolarization. With Sr (axon) or Ca (neuron) inside, IK is normal in time course for voltages less than about +50 mV; but for large steps, above +90 mV, there is a rapid time- dependent block or "inactivation." From roughly +70 to +90 mV (depending on concentration) the current has a complex time course that may be related to K accumulation near the membrane's outer surface. Block can be deepened by either increasing the concentration or the voltage. Electrical distance measurements suggest that the blocking ion moves to a site deep in the channel, possibly near the outer end. Block by internal Ca can be prevented by putting 10 mM Rb in the external solution. Recovery from block after a strong depolarization occurs quickly at +30 mV, with a time course that is about the same as that of normal K channel activation at this voltage. 20 mM Mg in neurons had no discernible blocking effect. The experiments raise questions regarding the relation of block to normal channel gating. It is speculated that when the channel is normally closed, the "blocking" site is occupied by a Ca ion that comes from the external medium.