Cargando…
BTX modification of Na channels in squid axons. I. State dependence of BTX action
The state dependence of Na channel modification by batrachotoxin (BTX) was investigated in voltage-clamped and internally perfused squid giant axons before (control axons) and after the pharmacological removal of the fast inactivation by pronase, chloramine-T, or NBA (pretreated axons). In control a...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1991
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216482/ https://www.ncbi.nlm.nih.gov/pubmed/1645393 |
_version_ | 1782149154245443584 |
---|---|
collection | PubMed |
description | The state dependence of Na channel modification by batrachotoxin (BTX) was investigated in voltage-clamped and internally perfused squid giant axons before (control axons) and after the pharmacological removal of the fast inactivation by pronase, chloramine-T, or NBA (pretreated axons). In control axons, in the presence of 2-5 microM BTX, a repetitive depolarization to open the channels was required to achieve a complete BTX modification, characterized by the suppression of the fast inactivation and a simultaneous 50-mV shift of the activation voltage dependence in the hyperpolarizing direction, whereas a single long-lasting (10 min) depolarization to +50 mV could promote the modification of only a small fraction of the channels, the noninactivating ones. In pretreated axons, such a single sustained depolarization as well as the repetitive depolarization could induce a complete modification, as evidenced by a similar shift of the activation voltage dependence. Therefore, the fast inactivated channels were not modified by BTX. We compared the rate of BTX modification of the open and slow inactivated channels in control and pretreated axons using different protocols: (a) During a repetitive depolarization with either 4- or 100-ms conditioning pulses to +80 mV, all the channels were modified in the open state in control axons as well as in pretreated axons, with a similar time constant of approximately 1.2 s. (b) In pronase-treated axons, when all the channels were in the slow inactivated state before BTX application, BTX could modify all the channels, but at a very slow rate, with a time constant of approximately 9.5 min. We conclude that at the macroscopic level BTX modification can occur through two different pathways: (a) via the open state, and (b) via the slow inactivated state of the channels that lack the fast inactivation, spontaneously or pharmacologically, but at a rate approximately 500-fold slower than through the main open channel pathway. |
format | Text |
id | pubmed-2216482 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1991 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22164822008-04-23 BTX modification of Na channels in squid axons. I. State dependence of BTX action J Gen Physiol Articles The state dependence of Na channel modification by batrachotoxin (BTX) was investigated in voltage-clamped and internally perfused squid giant axons before (control axons) and after the pharmacological removal of the fast inactivation by pronase, chloramine-T, or NBA (pretreated axons). In control axons, in the presence of 2-5 microM BTX, a repetitive depolarization to open the channels was required to achieve a complete BTX modification, characterized by the suppression of the fast inactivation and a simultaneous 50-mV shift of the activation voltage dependence in the hyperpolarizing direction, whereas a single long-lasting (10 min) depolarization to +50 mV could promote the modification of only a small fraction of the channels, the noninactivating ones. In pretreated axons, such a single sustained depolarization as well as the repetitive depolarization could induce a complete modification, as evidenced by a similar shift of the activation voltage dependence. Therefore, the fast inactivated channels were not modified by BTX. We compared the rate of BTX modification of the open and slow inactivated channels in control and pretreated axons using different protocols: (a) During a repetitive depolarization with either 4- or 100-ms conditioning pulses to +80 mV, all the channels were modified in the open state in control axons as well as in pretreated axons, with a similar time constant of approximately 1.2 s. (b) In pronase-treated axons, when all the channels were in the slow inactivated state before BTX application, BTX could modify all the channels, but at a very slow rate, with a time constant of approximately 9.5 min. We conclude that at the macroscopic level BTX modification can occur through two different pathways: (a) via the open state, and (b) via the slow inactivated state of the channels that lack the fast inactivation, spontaneously or pharmacologically, but at a rate approximately 500-fold slower than through the main open channel pathway. The Rockefeller University Press 1991-03-01 /pmc/articles/PMC2216482/ /pubmed/1645393 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles BTX modification of Na channels in squid axons. I. State dependence of BTX action |
title | BTX modification of Na channels in squid axons. I. State dependence of BTX action |
title_full | BTX modification of Na channels in squid axons. I. State dependence of BTX action |
title_fullStr | BTX modification of Na channels in squid axons. I. State dependence of BTX action |
title_full_unstemmed | BTX modification of Na channels in squid axons. I. State dependence of BTX action |
title_short | BTX modification of Na channels in squid axons. I. State dependence of BTX action |
title_sort | btx modification of na channels in squid axons. i. state dependence of btx action |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216482/ https://www.ncbi.nlm.nih.gov/pubmed/1645393 |