Cargando…
Current recording from sensory cilia of olfactory receptor cells in situ. II. Role of mucosal Na+, K+, and Ca2+ ions
Action potential-driven current transients were recorded from sensory cilia and used to monitor the spike frequency generated by olfactory receptor neurons, which were maintained in their natural position in the sensory epithelium. Both basal and messenger-induced activities, as elicited with forsko...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1991
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216496/ https://www.ncbi.nlm.nih.gov/pubmed/2056306 |
_version_ | 1782149157515952128 |
---|---|
collection | PubMed |
description | Action potential-driven current transients were recorded from sensory cilia and used to monitor the spike frequency generated by olfactory receptor neurons, which were maintained in their natural position in the sensory epithelium. Both basal and messenger-induced activities, as elicited with forskolin or cyclic nucleotides, were dependent on the presence of mucosal Na+. The spike rate decreased to approximately 20% when mucosal Na+ was lowered from 120 to 60 mM (replaced by N-methyl-D- glucamine+), without clear changes in amplitude and duration of the recorded action potential-driven transients. Mucosal Ca2+ and Mg2+ blocked spike discharge completely when increased from 1 to 10 mM in Ringer solution. Lowering mucosal Ca2+ below 1 mM increased the spike rate. These results can be explained by the presence of a cyclic nucleotide-dependent, Ca(2+)-sensitive cation conductance, which allows a depolarizing Na+ inward current to flow through the apical membrane of in situ receptor cells. A conductance with these properties, thought to provide the receptor current, was first described for isolated olfactory cells by Nakamura and Gold (1987. Nature (Lond.). 325:442- 444). The forskolin-stimulated spike rate decreased when l-cis- diltiazem, a known blocker of the cyclic nucleotide-dependent receptor current, was added to the mucosal solution. Spike rate also decreased when the mucosal K+ concentration was lowered. Mucosal Ba2+ and 4- aminopyridine, presumably by means of cell depolarization, rapidly increased the spike rate. This suggests the presence of apical K+ channels that render the receptor cells sensitive to the K+ concentration of the olfactory mucus. With a slower time course, mucosal Ba2+ and 4-aminopyridine decreased the amplitude and caused rectification of the fast current transients (prolongation of action potentials). Abolishment of the apical Na+ current (by removal of mucosal Na+), as indicated by a strong decrease in spike rate, could be counteracted by adding 10 mM Ba2+ or 1 mM 4-aminopyridine to the mucosal solution, which re-established spiking. Similarly, blockage of the apical cation conductance with 10 mM Ca could be counteracted by adding 10 mM Ba2+ or by raising the mucosal K+ concentration. Thus mucosal concentrations of Na+, K+, and Ca2+ will jointly affect the sensitivity of odor detection. |
format | Text |
id | pubmed-2216496 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1991 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22164962008-04-23 Current recording from sensory cilia of olfactory receptor cells in situ. II. Role of mucosal Na+, K+, and Ca2+ ions J Gen Physiol Articles Action potential-driven current transients were recorded from sensory cilia and used to monitor the spike frequency generated by olfactory receptor neurons, which were maintained in their natural position in the sensory epithelium. Both basal and messenger-induced activities, as elicited with forskolin or cyclic nucleotides, were dependent on the presence of mucosal Na+. The spike rate decreased to approximately 20% when mucosal Na+ was lowered from 120 to 60 mM (replaced by N-methyl-D- glucamine+), without clear changes in amplitude and duration of the recorded action potential-driven transients. Mucosal Ca2+ and Mg2+ blocked spike discharge completely when increased from 1 to 10 mM in Ringer solution. Lowering mucosal Ca2+ below 1 mM increased the spike rate. These results can be explained by the presence of a cyclic nucleotide-dependent, Ca(2+)-sensitive cation conductance, which allows a depolarizing Na+ inward current to flow through the apical membrane of in situ receptor cells. A conductance with these properties, thought to provide the receptor current, was first described for isolated olfactory cells by Nakamura and Gold (1987. Nature (Lond.). 325:442- 444). The forskolin-stimulated spike rate decreased when l-cis- diltiazem, a known blocker of the cyclic nucleotide-dependent receptor current, was added to the mucosal solution. Spike rate also decreased when the mucosal K+ concentration was lowered. Mucosal Ba2+ and 4- aminopyridine, presumably by means of cell depolarization, rapidly increased the spike rate. This suggests the presence of apical K+ channels that render the receptor cells sensitive to the K+ concentration of the olfactory mucus. With a slower time course, mucosal Ba2+ and 4-aminopyridine decreased the amplitude and caused rectification of the fast current transients (prolongation of action potentials). Abolishment of the apical Na+ current (by removal of mucosal Na+), as indicated by a strong decrease in spike rate, could be counteracted by adding 10 mM Ba2+ or 1 mM 4-aminopyridine to the mucosal solution, which re-established spiking. Similarly, blockage of the apical cation conductance with 10 mM Ca could be counteracted by adding 10 mM Ba2+ or by raising the mucosal K+ concentration. Thus mucosal concentrations of Na+, K+, and Ca2+ will jointly affect the sensitivity of odor detection. The Rockefeller University Press 1991-04-01 /pmc/articles/PMC2216496/ /pubmed/2056306 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Current recording from sensory cilia of olfactory receptor cells in situ. II. Role of mucosal Na+, K+, and Ca2+ ions |
title | Current recording from sensory cilia of olfactory receptor cells in situ. II. Role of mucosal Na+, K+, and Ca2+ ions |
title_full | Current recording from sensory cilia of olfactory receptor cells in situ. II. Role of mucosal Na+, K+, and Ca2+ ions |
title_fullStr | Current recording from sensory cilia of olfactory receptor cells in situ. II. Role of mucosal Na+, K+, and Ca2+ ions |
title_full_unstemmed | Current recording from sensory cilia of olfactory receptor cells in situ. II. Role of mucosal Na+, K+, and Ca2+ ions |
title_short | Current recording from sensory cilia of olfactory receptor cells in situ. II. Role of mucosal Na+, K+, and Ca2+ ions |
title_sort | current recording from sensory cilia of olfactory receptor cells in situ. ii. role of mucosal na+, k+, and ca2+ ions |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216496/ https://www.ncbi.nlm.nih.gov/pubmed/2056306 |