Cargando…

Alpha-1-adrenergic modulation of K and Cl transport in bovine retinal pigment epithelium

Intracellular microelectrode techniques were used to characterize the electrical responses of the bovine retinal pigment epithelium (RPE)- choroid to epinephrine (EP) and several other catecholamines that are putative paracrine signals between the neural retina and the RPE. Nanomolar amounts of EP o...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1992
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216611/
https://www.ncbi.nlm.nih.gov/pubmed/1319462
_version_ 1782149168611983360
collection PubMed
description Intracellular microelectrode techniques were used to characterize the electrical responses of the bovine retinal pigment epithelium (RPE)- choroid to epinephrine (EP) and several other catecholamines that are putative paracrine signals between the neural retina and the RPE. Nanomolar amounts of EP or norepinephrine (NEP), added to the apical bath, caused a series of conductance and voltage changes, first at the basolateral or choroid-facing membrane and then at the apical or retina- facing membrane. The relative potency of several adrenergic agonists and antagonists indicates that EP modulation of RPE transport begins with the activation of apical alpha-1-adrenergic receptors. The membrane-permeable calcium (Ca2+) buffer, amyl-BAPTA (1,2-bis(o- aminophenoxy)-ethane-N,N,N',N' tetraacetic acid) inhibited the EP- induced voltage and conductance changes by approximately 50-80%, implicating [Ca2+]i as a second messenger. This conclusion is supported by experiments using the Ca2+ ionophore A23187, which mimics the effects of EP. The basolateral membrane voltage response to EP was blocked by lowering cell Cl, by the presence of DIDS (4,4'- diisothiocyanostilbene-2,2'-disulfonic acid) in the basal bath, and by current clamping VB to the Cl equilibrium potential. In the latter experiments the EP-induced conductance changes were unaltered, indicating that EP increases basolateral membrane Cl conductance independent of voltage. The EP-induced change in basolateral Cl conductance was followed by a secondary decrease in apical membrane K conductance (approximately 50%) as measured by delta [K]o-induced diffusion potentials. Decreasing apical K from 5 to 2 mM in the presence of EP mimicked the effect of light on RPE apical and basolateral membrane voltage. These results indicate that EP may be an important paracrine signal that provides exquisite control of RPE physiology.
format Text
id pubmed-2216611
institution National Center for Biotechnology Information
language English
publishDate 1992
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22166112008-04-23 Alpha-1-adrenergic modulation of K and Cl transport in bovine retinal pigment epithelium J Gen Physiol Articles Intracellular microelectrode techniques were used to characterize the electrical responses of the bovine retinal pigment epithelium (RPE)- choroid to epinephrine (EP) and several other catecholamines that are putative paracrine signals between the neural retina and the RPE. Nanomolar amounts of EP or norepinephrine (NEP), added to the apical bath, caused a series of conductance and voltage changes, first at the basolateral or choroid-facing membrane and then at the apical or retina- facing membrane. The relative potency of several adrenergic agonists and antagonists indicates that EP modulation of RPE transport begins with the activation of apical alpha-1-adrenergic receptors. The membrane-permeable calcium (Ca2+) buffer, amyl-BAPTA (1,2-bis(o- aminophenoxy)-ethane-N,N,N',N' tetraacetic acid) inhibited the EP- induced voltage and conductance changes by approximately 50-80%, implicating [Ca2+]i as a second messenger. This conclusion is supported by experiments using the Ca2+ ionophore A23187, which mimics the effects of EP. The basolateral membrane voltage response to EP was blocked by lowering cell Cl, by the presence of DIDS (4,4'- diisothiocyanostilbene-2,2'-disulfonic acid) in the basal bath, and by current clamping VB to the Cl equilibrium potential. In the latter experiments the EP-induced conductance changes were unaltered, indicating that EP increases basolateral membrane Cl conductance independent of voltage. The EP-induced change in basolateral Cl conductance was followed by a secondary decrease in apical membrane K conductance (approximately 50%) as measured by delta [K]o-induced diffusion potentials. Decreasing apical K from 5 to 2 mM in the presence of EP mimicked the effect of light on RPE apical and basolateral membrane voltage. These results indicate that EP may be an important paracrine signal that provides exquisite control of RPE physiology. The Rockefeller University Press 1992-02-01 /pmc/articles/PMC2216611/ /pubmed/1319462 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Alpha-1-adrenergic modulation of K and Cl transport in bovine retinal pigment epithelium
title Alpha-1-adrenergic modulation of K and Cl transport in bovine retinal pigment epithelium
title_full Alpha-1-adrenergic modulation of K and Cl transport in bovine retinal pigment epithelium
title_fullStr Alpha-1-adrenergic modulation of K and Cl transport in bovine retinal pigment epithelium
title_full_unstemmed Alpha-1-adrenergic modulation of K and Cl transport in bovine retinal pigment epithelium
title_short Alpha-1-adrenergic modulation of K and Cl transport in bovine retinal pigment epithelium
title_sort alpha-1-adrenergic modulation of k and cl transport in bovine retinal pigment epithelium
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216611/
https://www.ncbi.nlm.nih.gov/pubmed/1319462