Cargando…

Ca(2+)-blockable, poorly selective cation channels in the apical membrane of amphibian epithelia. UO2(2+) reveals two channel types

This study deals with the effect of mucosal UO2(2+) on the Ca(2+)- blockable, poorly selective cation channels in the apical membrane of frog skin and toad urinary bladder. Our data show that UO2(2+) inhibits the Na+ currents through the amiloride-insensitive cation pathway and confirm a previously...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1993
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216754/
https://www.ncbi.nlm.nih.gov/pubmed/7679717
_version_ 1782149176287559680
collection PubMed
description This study deals with the effect of mucosal UO2(2+) on the Ca(2+)- blockable, poorly selective cation channels in the apical membrane of frog skin and toad urinary bladder. Our data show that UO2(2+) inhibits the Na+ currents through the amiloride-insensitive cation pathway and confirm a previously described stimulatory effect on the amiloride- blockade Na+ transport. Noise analysis of the Ca(2+)-blockable current demonstrates that the divalent also depresses the low-frequency Lorentzian (fc = 11.7 Hz) in the power density spectrum (PDS) and reveals the presence of high-frequency relaxation noise (fc = 58.5 Hz). The action of UO2(2+) is not reversed upon washout and is not accompanied by noise, typically induced by reversible blockers. The divalent merely depresses the plateau of the low-frequency Lorentzian, demonstrating a decrease in the number of conductive cation channels. Similarly, with mucosal K+ and Rb+, UO2(2+) also unmasks the high- frequency Lorentzian by depressing the noise from the slowly fluctuating cation channels (type S). In all experiments with mucosal Cs+, the PDS contains high-frequency relaxation noise (fc = 75.1 Hz in Rana temporaria, and 65.4 Hz in Rana ridibunda). An effect of UO2(2+) on the Cs+ currents and Lorentzian plateaus could not be demonstrated, suggesting that this monovalent cation does not pass through type S channels. Experiments with the urinary bladder revealed only a UO2(2+)- insensitive pathway permeable for Na+, K+, Rb+, and Cs+. We submit that in frog skin two cation-selective channels occur, distinguished by their spontaneous gating kinetics, their sensitivity to UO2(2+), and their permeability for Cs+. In toad urinary bladder, only one kind of cation-selective channel is observed, which resembles the UO2(2+)- insensitive channel in frog skin, with fast open-closed kinetics (type F).
format Text
id pubmed-2216754
institution National Center for Biotechnology Information
language English
publishDate 1993
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22167542008-04-23 Ca(2+)-blockable, poorly selective cation channels in the apical membrane of amphibian epithelia. UO2(2+) reveals two channel types J Gen Physiol Articles This study deals with the effect of mucosal UO2(2+) on the Ca(2+)- blockable, poorly selective cation channels in the apical membrane of frog skin and toad urinary bladder. Our data show that UO2(2+) inhibits the Na+ currents through the amiloride-insensitive cation pathway and confirm a previously described stimulatory effect on the amiloride- blockade Na+ transport. Noise analysis of the Ca(2+)-blockable current demonstrates that the divalent also depresses the low-frequency Lorentzian (fc = 11.7 Hz) in the power density spectrum (PDS) and reveals the presence of high-frequency relaxation noise (fc = 58.5 Hz). The action of UO2(2+) is not reversed upon washout and is not accompanied by noise, typically induced by reversible blockers. The divalent merely depresses the plateau of the low-frequency Lorentzian, demonstrating a decrease in the number of conductive cation channels. Similarly, with mucosal K+ and Rb+, UO2(2+) also unmasks the high- frequency Lorentzian by depressing the noise from the slowly fluctuating cation channels (type S). In all experiments with mucosal Cs+, the PDS contains high-frequency relaxation noise (fc = 75.1 Hz in Rana temporaria, and 65.4 Hz in Rana ridibunda). An effect of UO2(2+) on the Cs+ currents and Lorentzian plateaus could not be demonstrated, suggesting that this monovalent cation does not pass through type S channels. Experiments with the urinary bladder revealed only a UO2(2+)- insensitive pathway permeable for Na+, K+, Rb+, and Cs+. We submit that in frog skin two cation-selective channels occur, distinguished by their spontaneous gating kinetics, their sensitivity to UO2(2+), and their permeability for Cs+. In toad urinary bladder, only one kind of cation-selective channel is observed, which resembles the UO2(2+)- insensitive channel in frog skin, with fast open-closed kinetics (type F). The Rockefeller University Press 1993-01-01 /pmc/articles/PMC2216754/ /pubmed/7679717 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Ca(2+)-blockable, poorly selective cation channels in the apical membrane of amphibian epithelia. UO2(2+) reveals two channel types
title Ca(2+)-blockable, poorly selective cation channels in the apical membrane of amphibian epithelia. UO2(2+) reveals two channel types
title_full Ca(2+)-blockable, poorly selective cation channels in the apical membrane of amphibian epithelia. UO2(2+) reveals two channel types
title_fullStr Ca(2+)-blockable, poorly selective cation channels in the apical membrane of amphibian epithelia. UO2(2+) reveals two channel types
title_full_unstemmed Ca(2+)-blockable, poorly selective cation channels in the apical membrane of amphibian epithelia. UO2(2+) reveals two channel types
title_short Ca(2+)-blockable, poorly selective cation channels in the apical membrane of amphibian epithelia. UO2(2+) reveals two channel types
title_sort ca(2+)-blockable, poorly selective cation channels in the apical membrane of amphibian epithelia. uo2(2+) reveals two channel types
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216754/
https://www.ncbi.nlm.nih.gov/pubmed/7679717