Cargando…

Anion modulation of taste responses in sodium-sensitive neurons of the hamster chorda tympani nerve

Beidler's work in the 1950s showed that anions can strongly influence gustatory responses to sodium salts. We have demonstrated "anion inhibition" in the hamster by showing that the chorda tympani nerve responds more strongly to NaCl than to Na acetate over a wide range of concentrati...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1993
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216765/
https://www.ncbi.nlm.nih.gov/pubmed/8473851
_version_ 1782149178891173888
collection PubMed
description Beidler's work in the 1950s showed that anions can strongly influence gustatory responses to sodium salts. We have demonstrated "anion inhibition" in the hamster by showing that the chorda tympani nerve responds more strongly to NaCl than to Na acetate over a wide range of concentrations. Iontophoretic presentation of Cl- and acetate to the anterior tongue elicited no response in the chorda tympani, suggesting that these anions are not directly stimulatory. Drugs (0.01, 1.0, and 100 microM anthracene-9-carboxylate, diphenylamine-2-carboxylate, 4- acetamido-4'-isothiocyanatostilbene-2,2'-disulfonate, and furosemide) that interfere with movements of Cl- across epithelial cells were ineffective in altering chorda tympani responses to 0.03 M of either NaCl or Na acetate. Anion inhibition related to movements of anions across epithelial membranes therefore seems unlikely. The chorda tympani contains a population of nerve fibers highly selective for Na+ (N fibers) and another population sensitive to Na+ as well as other salts and acids (H fibers). We found that N fibers respond similarly to NaCl and Na acetate, with spiking activity increasing with increasing stimulus concentration (0.01-1.0 M). H fibers, however, respond more strongly to NaCl than to Na acetate. Furthermore, H fibers increase spiking with increases in NaCl concentration, but generally decrease their responses to increasing concentrations of Na acetate. It appears that anion inhibition applies to taste cells innervated by H fibers but not by N fibers. Taste cells innervated by N fibers use an apical Na+ channel, whereas those innervated by H fibers may use a paracellularly mediated, basolateral site of excitation.
format Text
id pubmed-2216765
institution National Center for Biotechnology Information
language English
publishDate 1993
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22167652008-04-23 Anion modulation of taste responses in sodium-sensitive neurons of the hamster chorda tympani nerve J Gen Physiol Articles Beidler's work in the 1950s showed that anions can strongly influence gustatory responses to sodium salts. We have demonstrated "anion inhibition" in the hamster by showing that the chorda tympani nerve responds more strongly to NaCl than to Na acetate over a wide range of concentrations. Iontophoretic presentation of Cl- and acetate to the anterior tongue elicited no response in the chorda tympani, suggesting that these anions are not directly stimulatory. Drugs (0.01, 1.0, and 100 microM anthracene-9-carboxylate, diphenylamine-2-carboxylate, 4- acetamido-4'-isothiocyanatostilbene-2,2'-disulfonate, and furosemide) that interfere with movements of Cl- across epithelial cells were ineffective in altering chorda tympani responses to 0.03 M of either NaCl or Na acetate. Anion inhibition related to movements of anions across epithelial membranes therefore seems unlikely. The chorda tympani contains a population of nerve fibers highly selective for Na+ (N fibers) and another population sensitive to Na+ as well as other salts and acids (H fibers). We found that N fibers respond similarly to NaCl and Na acetate, with spiking activity increasing with increasing stimulus concentration (0.01-1.0 M). H fibers, however, respond more strongly to NaCl than to Na acetate. Furthermore, H fibers increase spiking with increases in NaCl concentration, but generally decrease their responses to increasing concentrations of Na acetate. It appears that anion inhibition applies to taste cells innervated by H fibers but not by N fibers. Taste cells innervated by N fibers use an apical Na+ channel, whereas those innervated by H fibers may use a paracellularly mediated, basolateral site of excitation. The Rockefeller University Press 1993-03-01 /pmc/articles/PMC2216765/ /pubmed/8473851 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Anion modulation of taste responses in sodium-sensitive neurons of the hamster chorda tympani nerve
title Anion modulation of taste responses in sodium-sensitive neurons of the hamster chorda tympani nerve
title_full Anion modulation of taste responses in sodium-sensitive neurons of the hamster chorda tympani nerve
title_fullStr Anion modulation of taste responses in sodium-sensitive neurons of the hamster chorda tympani nerve
title_full_unstemmed Anion modulation of taste responses in sodium-sensitive neurons of the hamster chorda tympani nerve
title_short Anion modulation of taste responses in sodium-sensitive neurons of the hamster chorda tympani nerve
title_sort anion modulation of taste responses in sodium-sensitive neurons of the hamster chorda tympani nerve
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216765/
https://www.ncbi.nlm.nih.gov/pubmed/8473851