Cargando…
Modulation of voltage-dependent sodium and potassium currents by charged amphiphiles in cardiac ventricular myocytes. Effects via modification of surface potential
Modulation of voltage-dependent sodium and potassium currents by charged amphiphiles was investigated in cardiac ventricular myocytes using the patch-clamp technique. Negatively charged sodium dodecylsulfate (SDS) increased amplitude of INa, whereas positively charged dodecyltrimethylammonium (DDTMA...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1993
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216767/ https://www.ncbi.nlm.nih.gov/pubmed/8386217 |
_version_ | 1782149179356741632 |
---|---|
collection | PubMed |
description | Modulation of voltage-dependent sodium and potassium currents by charged amphiphiles was investigated in cardiac ventricular myocytes using the patch-clamp technique. Negatively charged sodium dodecylsulfate (SDS) increased amplitude of INa, whereas positively charged dodecyltrimethylammonium (DDTMA) decreased INa. Furthermore, SDS shifted the steady-state activation and inactivation of INa in the negative direction, whereas DDTMA shifted the curves in the opposite direction. These shifts provided an explanation for the changes in current amplitude. Activation and inactivation kinetics of INa were accelerated by SDS but slowed by DDTMA. These changes in both steady- state gating and kinetics of INa are consistent with a decrease of the intramembrane field by SDS and an increase of the field by DDTMA due to an alteration of surface potential after their insertion into the outer monolayer of the sarcolemma. The effect of SDS on the steady-state inactivation of INa was concentration dependent and partially reversed by screening surface charges with increased extracellular [Ca2+]. These amphiphiles also altered the activation of the delayed rectifier K+ current (IK,del), producing a shift in the negative direction by SDS but in the positive direction by DDTMA. These results suggest that the insertion of charged amphiphiles into the cell membrane alters the behavior of voltage-dependent INa and IK,del by changing the surface charge density, and consequently the surface potential and implies, although indirectly, that the lipid surface charges are important to the voltage-dependent gating of these channels. |
format | Text |
id | pubmed-2216767 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1993 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22167672008-04-23 Modulation of voltage-dependent sodium and potassium currents by charged amphiphiles in cardiac ventricular myocytes. Effects via modification of surface potential J Gen Physiol Articles Modulation of voltage-dependent sodium and potassium currents by charged amphiphiles was investigated in cardiac ventricular myocytes using the patch-clamp technique. Negatively charged sodium dodecylsulfate (SDS) increased amplitude of INa, whereas positively charged dodecyltrimethylammonium (DDTMA) decreased INa. Furthermore, SDS shifted the steady-state activation and inactivation of INa in the negative direction, whereas DDTMA shifted the curves in the opposite direction. These shifts provided an explanation for the changes in current amplitude. Activation and inactivation kinetics of INa were accelerated by SDS but slowed by DDTMA. These changes in both steady- state gating and kinetics of INa are consistent with a decrease of the intramembrane field by SDS and an increase of the field by DDTMA due to an alteration of surface potential after their insertion into the outer monolayer of the sarcolemma. The effect of SDS on the steady-state inactivation of INa was concentration dependent and partially reversed by screening surface charges with increased extracellular [Ca2+]. These amphiphiles also altered the activation of the delayed rectifier K+ current (IK,del), producing a shift in the negative direction by SDS but in the positive direction by DDTMA. These results suggest that the insertion of charged amphiphiles into the cell membrane alters the behavior of voltage-dependent INa and IK,del by changing the surface charge density, and consequently the surface potential and implies, although indirectly, that the lipid surface charges are important to the voltage-dependent gating of these channels. The Rockefeller University Press 1993-03-01 /pmc/articles/PMC2216767/ /pubmed/8386217 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Modulation of voltage-dependent sodium and potassium currents by charged amphiphiles in cardiac ventricular myocytes. Effects via modification of surface potential |
title | Modulation of voltage-dependent sodium and potassium currents by charged amphiphiles in cardiac ventricular myocytes. Effects via modification of surface potential |
title_full | Modulation of voltage-dependent sodium and potassium currents by charged amphiphiles in cardiac ventricular myocytes. Effects via modification of surface potential |
title_fullStr | Modulation of voltage-dependent sodium and potassium currents by charged amphiphiles in cardiac ventricular myocytes. Effects via modification of surface potential |
title_full_unstemmed | Modulation of voltage-dependent sodium and potassium currents by charged amphiphiles in cardiac ventricular myocytes. Effects via modification of surface potential |
title_short | Modulation of voltage-dependent sodium and potassium currents by charged amphiphiles in cardiac ventricular myocytes. Effects via modification of surface potential |
title_sort | modulation of voltage-dependent sodium and potassium currents by charged amphiphiles in cardiac ventricular myocytes. effects via modification of surface potential |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216767/ https://www.ncbi.nlm.nih.gov/pubmed/8386217 |