Cargando…

The calcium-independent transient outward potassium current in isolated ferret right ventricular myocytes. II. Closed state reverse use- dependent block by 4-aminopyridine

Block of the calcium-independent transient outward K+ current, I(to), by 4-aminopyridine (4-AP) was studied in ferret right ventricular myocytes using the whole cell patch clamp technique. 4-AP reduces I(to) through a closed state blocking mechanism displaying "reverse use- dependent" beha...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1993
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216773/
https://www.ncbi.nlm.nih.gov/pubmed/8505628
_version_ 1782149180757639168
collection PubMed
description Block of the calcium-independent transient outward K+ current, I(to), by 4-aminopyridine (4-AP) was studied in ferret right ventricular myocytes using the whole cell patch clamp technique. 4-AP reduces I(to) through a closed state blocking mechanism displaying "reverse use- dependent" behavior that was inferred from: (a) development of tonic block at hyperpolarized potentials; (b) inhibition of development of tonic block at depolarized potentials; (c) appearance of "crossover phenomena" in which the peak current is delayed in the presence of 4-AP at depolarized potentials; (d) relief of block at depolarized potentials which is concentration dependent and parallels steady-state inactivation for low 4-AP concentrations (V1/2 approximately -10 mV in 0.1 mM 4-AP) and steady-state activation at higher concentrations (V1/2 = +7 mV in 1 mM 4-AP, +15 mV in 10 mM 4-AP); and (e) reassociation of 4- AP at hyperpolarized potentials. No evidence for interaction of 4-AP with either the open or inactivated state of the I(to) channel was obtained from measurements of kinetics of recovery and deactivation in the presence of 0.5-1.0 mM 4-AP. At hyperpolarized potentials (-30 to - 90 mV) 10 mM 4-AP associates slowly (time constants ranging from approximately 800 to 1,300 ms) with the closed states of the channel (apparent Kd approximately 0.2 mM). From -90 to -20 mV the affinity of the I(to) channel for 4-AP appears to be voltage insensitive; however, at depolarized potentials (+20 to +100 mV) 4-AP dissociates with time constants ranging from approximately 350 to 150 ms. Consequently, the properties of 4-AP binding to the I(to) channel undergo a transition in the range of potentials over which channel activation and inactivation occurs (-30 to +20 mV). We propose a closed state model of I(to) channel gating and 4-AP binding kinetics, in which 4-AP binds to three closed states. In this model 4-AP has a progressively lower affinity as the channel approaches the open state, but has no intrinsic voltage dependence of binding.
format Text
id pubmed-2216773
institution National Center for Biotechnology Information
language English
publishDate 1993
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22167732008-04-23 The calcium-independent transient outward potassium current in isolated ferret right ventricular myocytes. II. Closed state reverse use- dependent block by 4-aminopyridine J Gen Physiol Articles Block of the calcium-independent transient outward K+ current, I(to), by 4-aminopyridine (4-AP) was studied in ferret right ventricular myocytes using the whole cell patch clamp technique. 4-AP reduces I(to) through a closed state blocking mechanism displaying "reverse use- dependent" behavior that was inferred from: (a) development of tonic block at hyperpolarized potentials; (b) inhibition of development of tonic block at depolarized potentials; (c) appearance of "crossover phenomena" in which the peak current is delayed in the presence of 4-AP at depolarized potentials; (d) relief of block at depolarized potentials which is concentration dependent and parallels steady-state inactivation for low 4-AP concentrations (V1/2 approximately -10 mV in 0.1 mM 4-AP) and steady-state activation at higher concentrations (V1/2 = +7 mV in 1 mM 4-AP, +15 mV in 10 mM 4-AP); and (e) reassociation of 4- AP at hyperpolarized potentials. No evidence for interaction of 4-AP with either the open or inactivated state of the I(to) channel was obtained from measurements of kinetics of recovery and deactivation in the presence of 0.5-1.0 mM 4-AP. At hyperpolarized potentials (-30 to - 90 mV) 10 mM 4-AP associates slowly (time constants ranging from approximately 800 to 1,300 ms) with the closed states of the channel (apparent Kd approximately 0.2 mM). From -90 to -20 mV the affinity of the I(to) channel for 4-AP appears to be voltage insensitive; however, at depolarized potentials (+20 to +100 mV) 4-AP dissociates with time constants ranging from approximately 350 to 150 ms. Consequently, the properties of 4-AP binding to the I(to) channel undergo a transition in the range of potentials over which channel activation and inactivation occurs (-30 to +20 mV). We propose a closed state model of I(to) channel gating and 4-AP binding kinetics, in which 4-AP binds to three closed states. In this model 4-AP has a progressively lower affinity as the channel approaches the open state, but has no intrinsic voltage dependence of binding. The Rockefeller University Press 1993-04-01 /pmc/articles/PMC2216773/ /pubmed/8505628 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
The calcium-independent transient outward potassium current in isolated ferret right ventricular myocytes. II. Closed state reverse use- dependent block by 4-aminopyridine
title The calcium-independent transient outward potassium current in isolated ferret right ventricular myocytes. II. Closed state reverse use- dependent block by 4-aminopyridine
title_full The calcium-independent transient outward potassium current in isolated ferret right ventricular myocytes. II. Closed state reverse use- dependent block by 4-aminopyridine
title_fullStr The calcium-independent transient outward potassium current in isolated ferret right ventricular myocytes. II. Closed state reverse use- dependent block by 4-aminopyridine
title_full_unstemmed The calcium-independent transient outward potassium current in isolated ferret right ventricular myocytes. II. Closed state reverse use- dependent block by 4-aminopyridine
title_short The calcium-independent transient outward potassium current in isolated ferret right ventricular myocytes. II. Closed state reverse use- dependent block by 4-aminopyridine
title_sort calcium-independent transient outward potassium current in isolated ferret right ventricular myocytes. ii. closed state reverse use- dependent block by 4-aminopyridine
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216773/
https://www.ncbi.nlm.nih.gov/pubmed/8505628