Cargando…

High ionic strength and low pH detain activated skinned rabbit skeletal muscle crossbridges in a low force state

The effects of varying pH and ionic strength on the force-velocity relations and tension transients of skinned rabbit skeletal muscle were studied at 1-2 degrees C. Both decreasing pH from 7.35 to 6.35 and raising ionic strength from 125 to 360 mM reduced isometric force by about half and decreased...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1993
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216776/
https://www.ncbi.nlm.nih.gov/pubmed/8505625
_version_ 1782149181464379392
collection PubMed
description The effects of varying pH and ionic strength on the force-velocity relations and tension transients of skinned rabbit skeletal muscle were studied at 1-2 degrees C. Both decreasing pH from 7.35 to 6.35 and raising ionic strength from 125 to 360 mM reduced isometric force by about half and decreased sarcomere stiffness by about one-fourth, so that the stiffness/force ratio was increased by half. Lowering pH also decreased maximum shortening velocity by approximately 29%, while increasing ionic strength had little effect on velocity. These effects on velocity were correlated with asymmetrical effects on stiffness. The increase in the stiffness/force ratio with both interventions was manifest as a greater relative force change associated with a sarcomere length step. This force difference persisted for a variable time after the step. At the high ionic strength the force difference was long- lasting after stretches but relaxed quickly after releases, suggesting that the structures responsible would not impose much resistance to steady-state shortening. The opposite was found in the low pH experiments. The force difference relaxed quickly after stretches but persisted for a long time after releases. Furthermore, this force difference reached a constant value of approximately 8% of isometric force with intermediate sizes of release, and was not increased with larger releases. This value was almost identical to the value of an internal load that would be sufficient to account for the reduction in maximum velocity seen at the low pH. The results are interpreted as showing that both low pH and high ionic strength inhibit the movement of crossbridges into the force-generating parts of their cycle after they have attached to the actin filaments, with very few other effects on the cycle. The two interventions are different, however, in that detained bridges can be detached readily by shortening when the detention is caused by high ionic strength but not when it is caused by low pH.
format Text
id pubmed-2216776
institution National Center for Biotechnology Information
language English
publishDate 1993
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22167762008-04-23 High ionic strength and low pH detain activated skinned rabbit skeletal muscle crossbridges in a low force state J Gen Physiol Articles The effects of varying pH and ionic strength on the force-velocity relations and tension transients of skinned rabbit skeletal muscle were studied at 1-2 degrees C. Both decreasing pH from 7.35 to 6.35 and raising ionic strength from 125 to 360 mM reduced isometric force by about half and decreased sarcomere stiffness by about one-fourth, so that the stiffness/force ratio was increased by half. Lowering pH also decreased maximum shortening velocity by approximately 29%, while increasing ionic strength had little effect on velocity. These effects on velocity were correlated with asymmetrical effects on stiffness. The increase in the stiffness/force ratio with both interventions was manifest as a greater relative force change associated with a sarcomere length step. This force difference persisted for a variable time after the step. At the high ionic strength the force difference was long- lasting after stretches but relaxed quickly after releases, suggesting that the structures responsible would not impose much resistance to steady-state shortening. The opposite was found in the low pH experiments. The force difference relaxed quickly after stretches but persisted for a long time after releases. Furthermore, this force difference reached a constant value of approximately 8% of isometric force with intermediate sizes of release, and was not increased with larger releases. This value was almost identical to the value of an internal load that would be sufficient to account for the reduction in maximum velocity seen at the low pH. The results are interpreted as showing that both low pH and high ionic strength inhibit the movement of crossbridges into the force-generating parts of their cycle after they have attached to the actin filaments, with very few other effects on the cycle. The two interventions are different, however, in that detained bridges can be detached readily by shortening when the detention is caused by high ionic strength but not when it is caused by low pH. The Rockefeller University Press 1993-04-01 /pmc/articles/PMC2216776/ /pubmed/8505625 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
High ionic strength and low pH detain activated skinned rabbit skeletal muscle crossbridges in a low force state
title High ionic strength and low pH detain activated skinned rabbit skeletal muscle crossbridges in a low force state
title_full High ionic strength and low pH detain activated skinned rabbit skeletal muscle crossbridges in a low force state
title_fullStr High ionic strength and low pH detain activated skinned rabbit skeletal muscle crossbridges in a low force state
title_full_unstemmed High ionic strength and low pH detain activated skinned rabbit skeletal muscle crossbridges in a low force state
title_short High ionic strength and low pH detain activated skinned rabbit skeletal muscle crossbridges in a low force state
title_sort high ionic strength and low ph detain activated skinned rabbit skeletal muscle crossbridges in a low force state
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216776/
https://www.ncbi.nlm.nih.gov/pubmed/8505625