Cargando…

Action potentials and chemosensitive conductances in the dendrites of olfactory neurons suggest new features for odor transduction

Odors affect the excitability of an olfactory neuron by altering membrane conductances at the ciliated end of a single, long dendrite. One mechanism to increase the sensitivity of olfactory neurons to odorants would be for their dendrites to support action potentials. We show for the first time that...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1994
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216834/
https://www.ncbi.nlm.nih.gov/pubmed/8189204
_version_ 1782149183576211456
collection PubMed
description Odors affect the excitability of an olfactory neuron by altering membrane conductances at the ciliated end of a single, long dendrite. One mechanism to increase the sensitivity of olfactory neurons to odorants would be for their dendrites to support action potentials. We show for the first time that isolated olfactory dendrites from the mudpuppy Necturus maculosus contain a high density of voltage-activated Na+ channels and produce Na-dependent action potentials in response to depolarizing current pulses. Furthermore, all required steps in the transduction process beginning with odor detection and culminating with action potential initiation occur in the ciliated dendrite. We have previously shown that odors can modulate Cl- and K+ conductances in intact olfactory neurons, producing both excitation and inhibition. Here we show that both conductances are also present in the isolated, ciliated dendrite near the site of odor binding, that they are modulated by odors, and that they affect neuronal excitability. Voltage- activated Cl- currents blocked by 4,4'-diisothiocyanatostilbene-2,2' disulfonic acid and niflumic acid were found at greater than five times higher average density in the ciliated dendrite than in the soma, whereas voltage-activated K+ currents inhibited by intracellular Cs+ were distributed on average more uniformly throughout the cell. When ciliated, chemosensitive dendrites were stimulated with the odorant taurine, the responses were similar to those seen in intact cells: Cl- currents were increased in some dendrites, whereas in others Cl- or K+ currents were decreased, and responses washed out during whole-cell recording. The Cl- equilibrium potential for intact neurons bathed in physiological saline was found to be -45 mV using an on-cell voltage- ramp protocol and delayed application of channel blockers. We postulate that transduction of some odors is caused by second messenger-mediated modulation of the resting membrane conductance (as opposed to a specialized generator conductance) in the cilia or apical region of the dendrite, and show how this could alter the firing frequency of olfactory neurons.
format Text
id pubmed-2216834
institution National Center for Biotechnology Information
language English
publishDate 1994
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22168342008-04-23 Action potentials and chemosensitive conductances in the dendrites of olfactory neurons suggest new features for odor transduction J Gen Physiol Articles Odors affect the excitability of an olfactory neuron by altering membrane conductances at the ciliated end of a single, long dendrite. One mechanism to increase the sensitivity of olfactory neurons to odorants would be for their dendrites to support action potentials. We show for the first time that isolated olfactory dendrites from the mudpuppy Necturus maculosus contain a high density of voltage-activated Na+ channels and produce Na-dependent action potentials in response to depolarizing current pulses. Furthermore, all required steps in the transduction process beginning with odor detection and culminating with action potential initiation occur in the ciliated dendrite. We have previously shown that odors can modulate Cl- and K+ conductances in intact olfactory neurons, producing both excitation and inhibition. Here we show that both conductances are also present in the isolated, ciliated dendrite near the site of odor binding, that they are modulated by odors, and that they affect neuronal excitability. Voltage- activated Cl- currents blocked by 4,4'-diisothiocyanatostilbene-2,2' disulfonic acid and niflumic acid were found at greater than five times higher average density in the ciliated dendrite than in the soma, whereas voltage-activated K+ currents inhibited by intracellular Cs+ were distributed on average more uniformly throughout the cell. When ciliated, chemosensitive dendrites were stimulated with the odorant taurine, the responses were similar to those seen in intact cells: Cl- currents were increased in some dendrites, whereas in others Cl- or K+ currents were decreased, and responses washed out during whole-cell recording. The Cl- equilibrium potential for intact neurons bathed in physiological saline was found to be -45 mV using an on-cell voltage- ramp protocol and delayed application of channel blockers. We postulate that transduction of some odors is caused by second messenger-mediated modulation of the resting membrane conductance (as opposed to a specialized generator conductance) in the cilia or apical region of the dendrite, and show how this could alter the firing frequency of olfactory neurons. The Rockefeller University Press 1994-02-01 /pmc/articles/PMC2216834/ /pubmed/8189204 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Action potentials and chemosensitive conductances in the dendrites of olfactory neurons suggest new features for odor transduction
title Action potentials and chemosensitive conductances in the dendrites of olfactory neurons suggest new features for odor transduction
title_full Action potentials and chemosensitive conductances in the dendrites of olfactory neurons suggest new features for odor transduction
title_fullStr Action potentials and chemosensitive conductances in the dendrites of olfactory neurons suggest new features for odor transduction
title_full_unstemmed Action potentials and chemosensitive conductances in the dendrites of olfactory neurons suggest new features for odor transduction
title_short Action potentials and chemosensitive conductances in the dendrites of olfactory neurons suggest new features for odor transduction
title_sort action potentials and chemosensitive conductances in the dendrites of olfactory neurons suggest new features for odor transduction
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216834/
https://www.ncbi.nlm.nih.gov/pubmed/8189204