Cargando…

Shaker potassium channel gating. I: Transitions near the open state

Kinetics of single voltage-dependent Shaker potassium channels expressed in Xenopus oocytes were studied in the absence of fast N-type inactivation. Comparison of the single-channel first latency distribution and the time course of the ensemble average current showed that the activation time course...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1994
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216835/
https://www.ncbi.nlm.nih.gov/pubmed/8189206
Descripción
Sumario:Kinetics of single voltage-dependent Shaker potassium channels expressed in Xenopus oocytes were studied in the absence of fast N-type inactivation. Comparison of the single-channel first latency distribution and the time course of the ensemble average current showed that the activation time course and its voltage dependence are largely determined by the transitions before first opening. The open dwell time data are consistent with a single kinetically distinguishable open state. Once the channel opens, it can enter at least two closed states which are not traversed frequently during the activation process. The rate constants for the transitions among these closed states and the open state are nearly voltage-independent at depolarized voltages (> - 30 mV). During the deactivation process at more negative voltages, the channel can close directly to a closed state in the activation pathway in a voltage-dependent fashion.