Cargando…
Modulation of the Na,K-pump function by beta subunit isoforms
To study the role of the Na,K-ATPase beta subunit in the ion transport activity, we have coexpressed the Bufo alpha 1 subunit (alpha 1) with three different isotypes of beta subunits, the Bufo Na,K-ATPase beta 1 (beta 1NaK) or beta 3 (beta 3NaK) subunit or the beta subunit of the rabbit gastric H,K-...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1994
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216863/ https://www.ncbi.nlm.nih.gov/pubmed/8057080 |
_version_ | 1782149190395101184 |
---|---|
collection | PubMed |
description | To study the role of the Na,K-ATPase beta subunit in the ion transport activity, we have coexpressed the Bufo alpha 1 subunit (alpha 1) with three different isotypes of beta subunits, the Bufo Na,K-ATPase beta 1 (beta 1NaK) or beta 3 (beta 3NaK) subunit or the beta subunit of the rabbit gastric H,K-ATPase (beta HK), by cRNA injection in Xenopus oocyte. We studied the K+ activation kinetics by measuring the Na,K- pump current induced by external K+ under voltage clamp conditions. The endogenous oocyte Na,K-ATPase was selectively inhibited, taking advantage of the large difference in ouabain sensitivity between Xenopus and Bufo Na,K pumps. The K+ half-activation constant (K1/2) was higher in the alpha 1 beta 3NaK than in the alpha 1 beta 1NaK groups in the presence of external Na+, but there was no significant difference in the absence of external Na+. Association of alpha 1 and beta HK subunits produced active Na,K pumps with a much lower apparent affinity for K+ both in the presence and in the absence of external Na+. The voltage dependence of the K1/2 for external K+ was similar with the three beta subunits. Our results indicate that the beta subunit has a significant influence on the ion transport activity of the Na,K pump. The small structural differences between the beta 1NaK and beta 3NaK subunits results in a difference of the apparent affinity for K+ that is measurable only in the presence of external Na+, and thus appears not to be directly related to the K+ binding site. In contrast, association of an alpha 1 subunit with a beta HK subunit results in a Na,K pump in which the K+ binding or translocating mechanisms are altered since the apparent affinity for external K+ is affected even in the absence of external Na+. |
format | Text |
id | pubmed-2216863 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1994 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22168632008-04-23 Modulation of the Na,K-pump function by beta subunit isoforms J Gen Physiol Articles To study the role of the Na,K-ATPase beta subunit in the ion transport activity, we have coexpressed the Bufo alpha 1 subunit (alpha 1) with three different isotypes of beta subunits, the Bufo Na,K-ATPase beta 1 (beta 1NaK) or beta 3 (beta 3NaK) subunit or the beta subunit of the rabbit gastric H,K-ATPase (beta HK), by cRNA injection in Xenopus oocyte. We studied the K+ activation kinetics by measuring the Na,K- pump current induced by external K+ under voltage clamp conditions. The endogenous oocyte Na,K-ATPase was selectively inhibited, taking advantage of the large difference in ouabain sensitivity between Xenopus and Bufo Na,K pumps. The K+ half-activation constant (K1/2) was higher in the alpha 1 beta 3NaK than in the alpha 1 beta 1NaK groups in the presence of external Na+, but there was no significant difference in the absence of external Na+. Association of alpha 1 and beta HK subunits produced active Na,K pumps with a much lower apparent affinity for K+ both in the presence and in the absence of external Na+. The voltage dependence of the K1/2 for external K+ was similar with the three beta subunits. Our results indicate that the beta subunit has a significant influence on the ion transport activity of the Na,K pump. The small structural differences between the beta 1NaK and beta 3NaK subunits results in a difference of the apparent affinity for K+ that is measurable only in the presence of external Na+, and thus appears not to be directly related to the K+ binding site. In contrast, association of an alpha 1 subunit with a beta HK subunit results in a Na,K pump in which the K+ binding or translocating mechanisms are altered since the apparent affinity for external K+ is affected even in the absence of external Na+. The Rockefeller University Press 1994-04-01 /pmc/articles/PMC2216863/ /pubmed/8057080 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Modulation of the Na,K-pump function by beta subunit isoforms |
title | Modulation of the Na,K-pump function by beta subunit isoforms |
title_full | Modulation of the Na,K-pump function by beta subunit isoforms |
title_fullStr | Modulation of the Na,K-pump function by beta subunit isoforms |
title_full_unstemmed | Modulation of the Na,K-pump function by beta subunit isoforms |
title_short | Modulation of the Na,K-pump function by beta subunit isoforms |
title_sort | modulation of the na,k-pump function by beta subunit isoforms |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216863/ https://www.ncbi.nlm.nih.gov/pubmed/8057080 |