Cargando…

The relationship between contractile force and intracellular [Ca2+] in intact rat cardiac trabeculae

The control of force by [Ca2+] was investigated in rat cardiac trabeculae loaded with fura-2 salt. At sarcomere lengths of 2.1-2.3 microns, the steady state force-[Ca2+]i relationship during tetanization in the presence of ryanodine was half maximally activated at a [Ca2+]i of 0.65 +/- 0.19 microM w...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1995
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216925/
https://www.ncbi.nlm.nih.gov/pubmed/7730787
_version_ 1782149193235693568
collection PubMed
description The control of force by [Ca2+] was investigated in rat cardiac trabeculae loaded with fura-2 salt. At sarcomere lengths of 2.1-2.3 microns, the steady state force-[Ca2+]i relationship during tetanization in the presence of ryanodine was half maximally activated at a [Ca2+]i of 0.65 +/- 0.19 microM with a Hill coefficient of 5.2 +/- 1.2 (mean +/- SD, n = 9), and the maximal stress produced at saturating [Ca2+]i equalled 121 +/- 35 mN/mm2 (n = 9). The dependence of steady state force on [Ca2+]i was identical in muscles tetanized in the presence of the Ca(2+)-ATPase inhibitor cyclopiazonic acid (CPA). The force-[Ca2+]i relationship during the relaxation of twitches in the presence of CPA coincided exactly to that measured at steady state during tetani, suggesting that CPA slows the decay rate of [Ca2+]i sufficiently to allow the force to come into a steady state with the [Ca2+]i. In contrast, the relationship of force to [Ca2+]i during the relaxation phase of control twitches was shifted leftward relative to the steady state relationship, establishing that relaxation is limited by the contractile system itself, not by Ca2+ removal from the cytosol. Under control conditions the force-[Ca2+]i relationship, quantified at the time of peak twitch force (i.e., dF/dt = 0), coincided fairly well with steady state measurements in some trabeculae (i.e., three of seven). However, the force-[Ca2+]i relationship at peak force did not correspond to the steady state measurements after the application of 5 mM 2,3-butanedione monoxime (BDM) (to accelerate cross-bridge kinetics) or 100 microM CPA (to slow the relaxation of the [Ca2+]i transient). Therefore, we conclude that the relationship of force to [Ca2+]i during physiological twitch contractions cannot be used to predict the steady state relationship.
format Text
id pubmed-2216925
institution National Center for Biotechnology Information
language English
publishDate 1995
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22169252008-04-23 The relationship between contractile force and intracellular [Ca2+] in intact rat cardiac trabeculae J Gen Physiol Articles The control of force by [Ca2+] was investigated in rat cardiac trabeculae loaded with fura-2 salt. At sarcomere lengths of 2.1-2.3 microns, the steady state force-[Ca2+]i relationship during tetanization in the presence of ryanodine was half maximally activated at a [Ca2+]i of 0.65 +/- 0.19 microM with a Hill coefficient of 5.2 +/- 1.2 (mean +/- SD, n = 9), and the maximal stress produced at saturating [Ca2+]i equalled 121 +/- 35 mN/mm2 (n = 9). The dependence of steady state force on [Ca2+]i was identical in muscles tetanized in the presence of the Ca(2+)-ATPase inhibitor cyclopiazonic acid (CPA). The force-[Ca2+]i relationship during the relaxation of twitches in the presence of CPA coincided exactly to that measured at steady state during tetani, suggesting that CPA slows the decay rate of [Ca2+]i sufficiently to allow the force to come into a steady state with the [Ca2+]i. In contrast, the relationship of force to [Ca2+]i during the relaxation phase of control twitches was shifted leftward relative to the steady state relationship, establishing that relaxation is limited by the contractile system itself, not by Ca2+ removal from the cytosol. Under control conditions the force-[Ca2+]i relationship, quantified at the time of peak twitch force (i.e., dF/dt = 0), coincided fairly well with steady state measurements in some trabeculae (i.e., three of seven). However, the force-[Ca2+]i relationship at peak force did not correspond to the steady state measurements after the application of 5 mM 2,3-butanedione monoxime (BDM) (to accelerate cross-bridge kinetics) or 100 microM CPA (to slow the relaxation of the [Ca2+]i transient). Therefore, we conclude that the relationship of force to [Ca2+]i during physiological twitch contractions cannot be used to predict the steady state relationship. The Rockefeller University Press 1995-01-01 /pmc/articles/PMC2216925/ /pubmed/7730787 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
The relationship between contractile force and intracellular [Ca2+] in intact rat cardiac trabeculae
title The relationship between contractile force and intracellular [Ca2+] in intact rat cardiac trabeculae
title_full The relationship between contractile force and intracellular [Ca2+] in intact rat cardiac trabeculae
title_fullStr The relationship between contractile force and intracellular [Ca2+] in intact rat cardiac trabeculae
title_full_unstemmed The relationship between contractile force and intracellular [Ca2+] in intact rat cardiac trabeculae
title_short The relationship between contractile force and intracellular [Ca2+] in intact rat cardiac trabeculae
title_sort relationship between contractile force and intracellular [ca2+] in intact rat cardiac trabeculae
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216925/
https://www.ncbi.nlm.nih.gov/pubmed/7730787