Cargando…

Micromolar 4-aminopyridine enhances invasion of a vertebrate neurosecretory terminal arborization: optical recording of action potential propagation using an ultrafast photodiode-MOSFET camera and a photodiode array

Modulation of the amount of neuropeptide released from a neurosecretory tissue may be achieved by different means. These include alterations in the quantity secreted from each active nerve terminal or in the actual number of terminals activated. From the vertebrate hypothalamus, magnocellular neuron...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1996
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216991/
https://www.ncbi.nlm.nih.gov/pubmed/8868047
_version_ 1782149202217795584
collection PubMed
description Modulation of the amount of neuropeptide released from a neurosecretory tissue may be achieved by different means. These include alterations in the quantity secreted from each active nerve terminal or in the actual number of terminals activated. From the vertebrate hypothalamus, magnocellular neurons project their axons as bundles of fibers through the median eminence and infundibular stalk to arborize extensively and terminate in the neurohypophysis, where the neurohypophysial peptides and proteins are released into the circulation by a Ca-dependent mechanism. Elevating [Ca2+]o increases the magnitude of an intrinsic optical change in the neurohypophysial terminals that is intimately related to the quantity of neuropeptide released. Similarly, the addition of micromolar concentrations of 4-aminopyridine to the bathing solution enhances this change in large angle light scattering. However, we show here that, while these effects are superficially similar, they reflect different mechanisms of action. Evidence from intrinsic optical signals (light scattering) and extrinsic (potentiometric dye) absorption changes suggests that calcium increases the amount of neuropeptide released from each active terminal in the classical manner, while 4-aminopyridine exerts its secretagogue action by enhancing the invasion of action potentials into the magno-cellular neuron's terminal arborization, increasing the actual number of terminals activated. Physiologically, electrical invasion of the complex terminal arborization in the neurohypophysis may represent an extremely sensitive control point for modulation of peptide secretion. This would be especially effective in a neurohaemal organ like the posterior pituitary, where, in contrast with a collection of presynaptic terminals, the precise location of release is less important than the quantity released.
format Text
id pubmed-2216991
institution National Center for Biotechnology Information
language English
publishDate 1996
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22169912008-04-23 Micromolar 4-aminopyridine enhances invasion of a vertebrate neurosecretory terminal arborization: optical recording of action potential propagation using an ultrafast photodiode-MOSFET camera and a photodiode array J Gen Physiol Articles Modulation of the amount of neuropeptide released from a neurosecretory tissue may be achieved by different means. These include alterations in the quantity secreted from each active nerve terminal or in the actual number of terminals activated. From the vertebrate hypothalamus, magnocellular neurons project their axons as bundles of fibers through the median eminence and infundibular stalk to arborize extensively and terminate in the neurohypophysis, where the neurohypophysial peptides and proteins are released into the circulation by a Ca-dependent mechanism. Elevating [Ca2+]o increases the magnitude of an intrinsic optical change in the neurohypophysial terminals that is intimately related to the quantity of neuropeptide released. Similarly, the addition of micromolar concentrations of 4-aminopyridine to the bathing solution enhances this change in large angle light scattering. However, we show here that, while these effects are superficially similar, they reflect different mechanisms of action. Evidence from intrinsic optical signals (light scattering) and extrinsic (potentiometric dye) absorption changes suggests that calcium increases the amount of neuropeptide released from each active terminal in the classical manner, while 4-aminopyridine exerts its secretagogue action by enhancing the invasion of action potentials into the magno-cellular neuron's terminal arborization, increasing the actual number of terminals activated. Physiologically, electrical invasion of the complex terminal arborization in the neurohypophysis may represent an extremely sensitive control point for modulation of peptide secretion. This would be especially effective in a neurohaemal organ like the posterior pituitary, where, in contrast with a collection of presynaptic terminals, the precise location of release is less important than the quantity released. The Rockefeller University Press 1996-03-01 /pmc/articles/PMC2216991/ /pubmed/8868047 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Micromolar 4-aminopyridine enhances invasion of a vertebrate neurosecretory terminal arborization: optical recording of action potential propagation using an ultrafast photodiode-MOSFET camera and a photodiode array
title Micromolar 4-aminopyridine enhances invasion of a vertebrate neurosecretory terminal arborization: optical recording of action potential propagation using an ultrafast photodiode-MOSFET camera and a photodiode array
title_full Micromolar 4-aminopyridine enhances invasion of a vertebrate neurosecretory terminal arborization: optical recording of action potential propagation using an ultrafast photodiode-MOSFET camera and a photodiode array
title_fullStr Micromolar 4-aminopyridine enhances invasion of a vertebrate neurosecretory terminal arborization: optical recording of action potential propagation using an ultrafast photodiode-MOSFET camera and a photodiode array
title_full_unstemmed Micromolar 4-aminopyridine enhances invasion of a vertebrate neurosecretory terminal arborization: optical recording of action potential propagation using an ultrafast photodiode-MOSFET camera and a photodiode array
title_short Micromolar 4-aminopyridine enhances invasion of a vertebrate neurosecretory terminal arborization: optical recording of action potential propagation using an ultrafast photodiode-MOSFET camera and a photodiode array
title_sort micromolar 4-aminopyridine enhances invasion of a vertebrate neurosecretory terminal arborization: optical recording of action potential propagation using an ultrafast photodiode-mosfet camera and a photodiode array
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216991/
https://www.ncbi.nlm.nih.gov/pubmed/8868047