Cargando…

Assembly and suppression of endogenous Kv1.3 channels in human T cells

The predominant K+ channel in human T lymphocytes is Kv1.3, which inactivates by a C-type mechanism. To study assembly of these tetrameric channels in Jurkat, a human T-lymphocyte cell line, we have characterized the formation of heterotetrameric channels between endogenous wild-type (WT) Kv1.3 subu...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1996
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216993/
https://www.ncbi.nlm.nih.gov/pubmed/8868051
_version_ 1782149202683363328
collection PubMed
description The predominant K+ channel in human T lymphocytes is Kv1.3, which inactivates by a C-type mechanism. To study assembly of these tetrameric channels in Jurkat, a human T-lymphocyte cell line, we have characterized the formation of heterotetrameric channels between endogenous wild-type (WT) Kv1.3 subunits and heterologously expressed mutant (A413V) Kv1.3 subunits. We use a kinetic analysis of C-type inactivation of currents produced by homotetrameric channels and heterotetrameric channels to determine the distribution of channels with different subunit stoichiometries. The distributions are well- described by either a binomial distribution or a binomial distribution plus a fraction of WT homotetramers, indicating that subunit assembly is a random process and that tetramers expressed in the plasma membrane do not dissociate and reassemble. Additionally, endogenous Kv1.3 current is suppressed by a heterologously expressed truncated Kv1.3 that contains the amino terminus and the first two transmembrane segments. The time course for suppression, which is maximal at 48 h after transfection, overlaps with the time interval for heterotetramer formation between heterologously expressed A413V and endogenous WT channels. Our findings suggest that diversity of K+ channel subtypes in a cell is regulated not by spatial segregation of monomeric pools, but rather by the degree of temporal overlap and the kinetics of subunit expression.
format Text
id pubmed-2216993
institution National Center for Biotechnology Information
language English
publishDate 1996
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22169932008-04-23 Assembly and suppression of endogenous Kv1.3 channels in human T cells J Gen Physiol Articles The predominant K+ channel in human T lymphocytes is Kv1.3, which inactivates by a C-type mechanism. To study assembly of these tetrameric channels in Jurkat, a human T-lymphocyte cell line, we have characterized the formation of heterotetrameric channels between endogenous wild-type (WT) Kv1.3 subunits and heterologously expressed mutant (A413V) Kv1.3 subunits. We use a kinetic analysis of C-type inactivation of currents produced by homotetrameric channels and heterotetrameric channels to determine the distribution of channels with different subunit stoichiometries. The distributions are well- described by either a binomial distribution or a binomial distribution plus a fraction of WT homotetramers, indicating that subunit assembly is a random process and that tetramers expressed in the plasma membrane do not dissociate and reassemble. Additionally, endogenous Kv1.3 current is suppressed by a heterologously expressed truncated Kv1.3 that contains the amino terminus and the first two transmembrane segments. The time course for suppression, which is maximal at 48 h after transfection, overlaps with the time interval for heterotetramer formation between heterologously expressed A413V and endogenous WT channels. Our findings suggest that diversity of K+ channel subtypes in a cell is regulated not by spatial segregation of monomeric pools, but rather by the degree of temporal overlap and the kinetics of subunit expression. The Rockefeller University Press 1996-03-01 /pmc/articles/PMC2216993/ /pubmed/8868051 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Assembly and suppression of endogenous Kv1.3 channels in human T cells
title Assembly and suppression of endogenous Kv1.3 channels in human T cells
title_full Assembly and suppression of endogenous Kv1.3 channels in human T cells
title_fullStr Assembly and suppression of endogenous Kv1.3 channels in human T cells
title_full_unstemmed Assembly and suppression of endogenous Kv1.3 channels in human T cells
title_short Assembly and suppression of endogenous Kv1.3 channels in human T cells
title_sort assembly and suppression of endogenous kv1.3 channels in human t cells
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216993/
https://www.ncbi.nlm.nih.gov/pubmed/8868051