Cargando…

Major transmembrane movement associated with colicin Ia channel gating

Colicin Ia, a bacterial protein toxin of 626 amino acid residues, forms voltage-dependent channels in planar lipid bilayer membranes. We have exploited the high affinity binding of streptavidin to biotin to map the topology of the channel-forming domain (roughly 175 residues of the COOH-terminal end...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1996
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216999/
https://www.ncbi.nlm.nih.gov/pubmed/8868045
_version_ 1782149204111523840
collection PubMed
description Colicin Ia, a bacterial protein toxin of 626 amino acid residues, forms voltage-dependent channels in planar lipid bilayer membranes. We have exploited the high affinity binding of streptavidin to biotin to map the topology of the channel-forming domain (roughly 175 residues of the COOH-terminal end) with respect to the membrane. That is, we have determined, for the channel's open and closed states, which parts of this domain are exposed to the aqueous solutions on either side of the membrane and which are inserted into the bilayer. This was done by biotinylating cysteine residues introduced by site-directed mutagenesis, and monitoring by electrophysiological methods the effect of streptavidin addition on channel behavior. We have identified a region of at least 68 residues that flips back and forth across the membrane in association with channel opening and closing. This identification was based on our observations that for mutants biotinylated in this region, streptavidin added to the cis (colicin- containing) compartment interfered with channel opening, and trans streptavidin interfered with channel closing. (If biotin was linked to the colicin by a disulfide bond, the effects of streptavidin on channel closing could be reversed by detaching the streptavidin-biotin complex from the colicin, using a water-soluble reducing agent. This showed that the cysteine sulfur, not just the biotin, is exposed to the trans solution). The upstream and downstream segments flanking the translocated region move into and out of the bilayer during channel opening and closing, forming two transmembrane segments. Surprisingly, if any of several residues near the upstream end of the translocated region is held on the cis side by streptavidin, the colicin still forms voltage-dependent channels, indicating that a part of the protein that normally is fully translocated across the membrane can become the upstream transmembrane segment. Evidently, the identity of the upstream transmembrane segment is not crucial to channel formation, and several open channel structures can exist.
format Text
id pubmed-2216999
institution National Center for Biotechnology Information
language English
publishDate 1996
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22169992008-04-23 Major transmembrane movement associated with colicin Ia channel gating J Gen Physiol Articles Colicin Ia, a bacterial protein toxin of 626 amino acid residues, forms voltage-dependent channels in planar lipid bilayer membranes. We have exploited the high affinity binding of streptavidin to biotin to map the topology of the channel-forming domain (roughly 175 residues of the COOH-terminal end) with respect to the membrane. That is, we have determined, for the channel's open and closed states, which parts of this domain are exposed to the aqueous solutions on either side of the membrane and which are inserted into the bilayer. This was done by biotinylating cysteine residues introduced by site-directed mutagenesis, and monitoring by electrophysiological methods the effect of streptavidin addition on channel behavior. We have identified a region of at least 68 residues that flips back and forth across the membrane in association with channel opening and closing. This identification was based on our observations that for mutants biotinylated in this region, streptavidin added to the cis (colicin- containing) compartment interfered with channel opening, and trans streptavidin interfered with channel closing. (If biotin was linked to the colicin by a disulfide bond, the effects of streptavidin on channel closing could be reversed by detaching the streptavidin-biotin complex from the colicin, using a water-soluble reducing agent. This showed that the cysteine sulfur, not just the biotin, is exposed to the trans solution). The upstream and downstream segments flanking the translocated region move into and out of the bilayer during channel opening and closing, forming two transmembrane segments. Surprisingly, if any of several residues near the upstream end of the translocated region is held on the cis side by streptavidin, the colicin still forms voltage-dependent channels, indicating that a part of the protein that normally is fully translocated across the membrane can become the upstream transmembrane segment. Evidently, the identity of the upstream transmembrane segment is not crucial to channel formation, and several open channel structures can exist. The Rockefeller University Press 1996-03-01 /pmc/articles/PMC2216999/ /pubmed/8868045 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Major transmembrane movement associated with colicin Ia channel gating
title Major transmembrane movement associated with colicin Ia channel gating
title_full Major transmembrane movement associated with colicin Ia channel gating
title_fullStr Major transmembrane movement associated with colicin Ia channel gating
title_full_unstemmed Major transmembrane movement associated with colicin Ia channel gating
title_short Major transmembrane movement associated with colicin Ia channel gating
title_sort major transmembrane movement associated with colicin ia channel gating
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216999/
https://www.ncbi.nlm.nih.gov/pubmed/8868045