Cargando…

Osmotic gradient-induced water permeation across the sarcolemma of rabbit ventricular myocytes

The mechanism of water permeation across the sarcolemma was characterized by examining the kinetics and temperature dependence of osmotic swelling and shrinkage of rabbit ventricular myocytes. The magnitude of swelling and the kinetics of swelling and shrinkage were temperature dependent, but the ma...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1996
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2217004/
https://www.ncbi.nlm.nih.gov/pubmed/8722563
_version_ 1782149205339406336
collection PubMed
description The mechanism of water permeation across the sarcolemma was characterized by examining the kinetics and temperature dependence of osmotic swelling and shrinkage of rabbit ventricular myocytes. The magnitude of swelling and the kinetics of swelling and shrinkage were temperature dependent, but the magnitude of shrinkage was very similar at 6 degrees, 22 degrees, and 37 degrees C. Membrane hydraulic conductivity, Lp, was approximately 1.2 x 10(-10) liter.N-1.s-1 at 22 degrees C, corresponding to an osmotic permeability coefficient, Pf, of 16 microns.s-1, and was independent of the direction of water flux, the magnitude of the imposed osmotic gradient (35-165 mosm/liter), and the initial cell volume. This value of Lp represents an upper limit because the membrane was assumed to be a smooth surface. Based on capacitive membrane area, Lp was 0.7 to 0.9 x 10(-10) liter.N-1.s-1. Nevertheless, estimates of Lp in ventricle are 15 to 25 times lower than those in human erythrocytes and are in the range of values reported for protein- free lipid bilayers and biological membranes without functioning water channels (aquaporin). Evaluation of the effect of unstirred layers showed that in the worst case they decrease Lp by < or = 2.3%. Analysis of the temperature dependence of Lp indicated that its apparent Arrhenius activation energy, Ea', was 11.7 +/- 0.9 kcal/mol between 6 degrees and 22 degrees C and 9.2 +/- 0.9 kcal/mol between 22 degrees and 37 degrees C. These values are significantly greater than that typically found for water flow through water-filled pores, approximately 4 kcal/mol, and are in the range reported for artificial and natural membranes without functioning water channels. Taken together, these data strongly argue that the vast majority of osmotic water flux in ventricular myocytes penetrates the lipid bilayer itself rather than passing through water-filled pores.
format Text
id pubmed-2217004
institution National Center for Biotechnology Information
language English
publishDate 1996
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22170042008-04-23 Osmotic gradient-induced water permeation across the sarcolemma of rabbit ventricular myocytes J Gen Physiol Articles The mechanism of water permeation across the sarcolemma was characterized by examining the kinetics and temperature dependence of osmotic swelling and shrinkage of rabbit ventricular myocytes. The magnitude of swelling and the kinetics of swelling and shrinkage were temperature dependent, but the magnitude of shrinkage was very similar at 6 degrees, 22 degrees, and 37 degrees C. Membrane hydraulic conductivity, Lp, was approximately 1.2 x 10(-10) liter.N-1.s-1 at 22 degrees C, corresponding to an osmotic permeability coefficient, Pf, of 16 microns.s-1, and was independent of the direction of water flux, the magnitude of the imposed osmotic gradient (35-165 mosm/liter), and the initial cell volume. This value of Lp represents an upper limit because the membrane was assumed to be a smooth surface. Based on capacitive membrane area, Lp was 0.7 to 0.9 x 10(-10) liter.N-1.s-1. Nevertheless, estimates of Lp in ventricle are 15 to 25 times lower than those in human erythrocytes and are in the range of values reported for protein- free lipid bilayers and biological membranes without functioning water channels (aquaporin). Evaluation of the effect of unstirred layers showed that in the worst case they decrease Lp by < or = 2.3%. Analysis of the temperature dependence of Lp indicated that its apparent Arrhenius activation energy, Ea', was 11.7 +/- 0.9 kcal/mol between 6 degrees and 22 degrees C and 9.2 +/- 0.9 kcal/mol between 22 degrees and 37 degrees C. These values are significantly greater than that typically found for water flow through water-filled pores, approximately 4 kcal/mol, and are in the range reported for artificial and natural membranes without functioning water channels. Taken together, these data strongly argue that the vast majority of osmotic water flux in ventricular myocytes penetrates the lipid bilayer itself rather than passing through water-filled pores. The Rockefeller University Press 1996-04-01 /pmc/articles/PMC2217004/ /pubmed/8722563 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Osmotic gradient-induced water permeation across the sarcolemma of rabbit ventricular myocytes
title Osmotic gradient-induced water permeation across the sarcolemma of rabbit ventricular myocytes
title_full Osmotic gradient-induced water permeation across the sarcolemma of rabbit ventricular myocytes
title_fullStr Osmotic gradient-induced water permeation across the sarcolemma of rabbit ventricular myocytes
title_full_unstemmed Osmotic gradient-induced water permeation across the sarcolemma of rabbit ventricular myocytes
title_short Osmotic gradient-induced water permeation across the sarcolemma of rabbit ventricular myocytes
title_sort osmotic gradient-induced water permeation across the sarcolemma of rabbit ventricular myocytes
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2217004/
https://www.ncbi.nlm.nih.gov/pubmed/8722563