Cargando…

Distribution and characterization of functional amiloride-sensitive sodium channels in rat tongue

The role of amiloride-sensitive Na+ channels (ASSCs) in the transduction of salty taste stimuli in rat fungiform taste buds has been well established. Evidence for the involvement of ASSCs in salt transduction in circumvallate and foliate taste buds is, at best, contradictory. In an attempt to resol...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1996
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2217005/
https://www.ncbi.nlm.nih.gov/pubmed/8722566
_version_ 1782149205570093056
collection PubMed
description The role of amiloride-sensitive Na+ channels (ASSCs) in the transduction of salty taste stimuli in rat fungiform taste buds has been well established. Evidence for the involvement of ASSCs in salt transduction in circumvallate and foliate taste buds is, at best, contradictory. In an attempt to resolve this apparent controversy, we have begun to look for functional ASSCs in taste buds isolated from fungiform, foliate, and circumvallate papillae of male Sprague-Dawley rats. By use of a combination of whole-cell and nystatin-perforated patch-clamp recording, cells within the taste bud that exhibited voltage-dependent currents, reflective of taste receptor cells (TRCs), were subsequently tested for amiloride sensitivity. TRCs were held at - 70 mV, and steady-state current and input resistance were monitored during superfusion of Na(+)-free saline and salines containing amiloride (0.1 microM to 1 mM). Greater than 90% of all TRCs from each of the papillae responded to Na+ replacement with a decrease in current and an increase in input resistance, reflective of a reduction in electrogenic Na+ movement into the cell. ASSCs were found in two thirds of fungiform and in one third of foliate TRCs, whereas none of the circumvallate TRCs was amiloride sensitive. These findings indicate that the mechanism for Na+ influx differs among taste bud types. All amiloride-sensitive currents had apparent inhibition constants in the submicromolar range. These results agree with afferent nerve recordings and raise the possibility that the extensive labeling of the ASSC protein and mRNA in the circumvallate papillae may reflect a pool of nonfunctional channels or a pool of channels that lacks sensitivity to amiloride.
format Text
id pubmed-2217005
institution National Center for Biotechnology Information
language English
publishDate 1996
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22170052008-04-23 Distribution and characterization of functional amiloride-sensitive sodium channels in rat tongue J Gen Physiol Articles The role of amiloride-sensitive Na+ channels (ASSCs) in the transduction of salty taste stimuli in rat fungiform taste buds has been well established. Evidence for the involvement of ASSCs in salt transduction in circumvallate and foliate taste buds is, at best, contradictory. In an attempt to resolve this apparent controversy, we have begun to look for functional ASSCs in taste buds isolated from fungiform, foliate, and circumvallate papillae of male Sprague-Dawley rats. By use of a combination of whole-cell and nystatin-perforated patch-clamp recording, cells within the taste bud that exhibited voltage-dependent currents, reflective of taste receptor cells (TRCs), were subsequently tested for amiloride sensitivity. TRCs were held at - 70 mV, and steady-state current and input resistance were monitored during superfusion of Na(+)-free saline and salines containing amiloride (0.1 microM to 1 mM). Greater than 90% of all TRCs from each of the papillae responded to Na+ replacement with a decrease in current and an increase in input resistance, reflective of a reduction in electrogenic Na+ movement into the cell. ASSCs were found in two thirds of fungiform and in one third of foliate TRCs, whereas none of the circumvallate TRCs was amiloride sensitive. These findings indicate that the mechanism for Na+ influx differs among taste bud types. All amiloride-sensitive currents had apparent inhibition constants in the submicromolar range. These results agree with afferent nerve recordings and raise the possibility that the extensive labeling of the ASSC protein and mRNA in the circumvallate papillae may reflect a pool of nonfunctional channels or a pool of channels that lacks sensitivity to amiloride. The Rockefeller University Press 1996-04-01 /pmc/articles/PMC2217005/ /pubmed/8722566 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Distribution and characterization of functional amiloride-sensitive sodium channels in rat tongue
title Distribution and characterization of functional amiloride-sensitive sodium channels in rat tongue
title_full Distribution and characterization of functional amiloride-sensitive sodium channels in rat tongue
title_fullStr Distribution and characterization of functional amiloride-sensitive sodium channels in rat tongue
title_full_unstemmed Distribution and characterization of functional amiloride-sensitive sodium channels in rat tongue
title_short Distribution and characterization of functional amiloride-sensitive sodium channels in rat tongue
title_sort distribution and characterization of functional amiloride-sensitive sodium channels in rat tongue
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2217005/
https://www.ncbi.nlm.nih.gov/pubmed/8722566