Cargando…
Fast inactivation causes rectification of the IKr channel
The mechanism of rectification of HERG, the human cardiac delayed rectifier K+ channel, was studied after heterologous expression in Xenopus oocytes. Currents were measured using two-microelectrode and macropatch voltage clamp techniques. The fully activated current- voltage (I-V) relationship for H...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1996
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2217012/ https://www.ncbi.nlm.nih.gov/pubmed/8740374 |
_version_ | 1782149207206920192 |
---|---|
collection | PubMed |
description | The mechanism of rectification of HERG, the human cardiac delayed rectifier K+ channel, was studied after heterologous expression in Xenopus oocytes. Currents were measured using two-microelectrode and macropatch voltage clamp techniques. The fully activated current- voltage (I-V) relationship for HERG inwardly rectified. Rectification was not altered by exposing the cytoplasmic side of a macropatch to a divalent-free solution, indicating this property was not caused by voltage-dependent block of outward current by Mg2+ or other soluble cytosolic molecules. The instantaneous I-V relationship for HERG was linear after removal of fast inactivation by a brief hyperpolarization. The time constants for the onset of and recovery from inactivation were a bell-shaped function of membrane potential. The time constants of inactivation varied from 1.8 ms at +50 mV to 16 ms at -20 mV; recovery from inactivation varied from 4.7 ms at -120 mV to 15 ms at -50 mV. Truncation of the NH2-terminal region of HERG shifted the voltage dependence of activation and inactivation by +20 to +30 mV. In addition, the rate of deactivation of the truncated channel was much faster than wild-type HERG. The mechanism of HERG rectification is voltage-gated fast inactivation. Inactivation of channels proceeds at a much faster rate than activation, such that no outward current is observed upon depolarization to very high membrane potentials. Fast inactivation of HERG and the resulting rectification are partly responsible for the prolonged plateau phase typical of ventricular action potentials. |
format | Text |
id | pubmed-2217012 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1996 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22170122008-04-23 Fast inactivation causes rectification of the IKr channel J Gen Physiol Articles The mechanism of rectification of HERG, the human cardiac delayed rectifier K+ channel, was studied after heterologous expression in Xenopus oocytes. Currents were measured using two-microelectrode and macropatch voltage clamp techniques. The fully activated current- voltage (I-V) relationship for HERG inwardly rectified. Rectification was not altered by exposing the cytoplasmic side of a macropatch to a divalent-free solution, indicating this property was not caused by voltage-dependent block of outward current by Mg2+ or other soluble cytosolic molecules. The instantaneous I-V relationship for HERG was linear after removal of fast inactivation by a brief hyperpolarization. The time constants for the onset of and recovery from inactivation were a bell-shaped function of membrane potential. The time constants of inactivation varied from 1.8 ms at +50 mV to 16 ms at -20 mV; recovery from inactivation varied from 4.7 ms at -120 mV to 15 ms at -50 mV. Truncation of the NH2-terminal region of HERG shifted the voltage dependence of activation and inactivation by +20 to +30 mV. In addition, the rate of deactivation of the truncated channel was much faster than wild-type HERG. The mechanism of HERG rectification is voltage-gated fast inactivation. Inactivation of channels proceeds at a much faster rate than activation, such that no outward current is observed upon depolarization to very high membrane potentials. Fast inactivation of HERG and the resulting rectification are partly responsible for the prolonged plateau phase typical of ventricular action potentials. The Rockefeller University Press 1996-05-01 /pmc/articles/PMC2217012/ /pubmed/8740374 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Fast inactivation causes rectification of the IKr channel |
title | Fast inactivation causes rectification of the IKr channel |
title_full | Fast inactivation causes rectification of the IKr channel |
title_fullStr | Fast inactivation causes rectification of the IKr channel |
title_full_unstemmed | Fast inactivation causes rectification of the IKr channel |
title_short | Fast inactivation causes rectification of the IKr channel |
title_sort | fast inactivation causes rectification of the ikr channel |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2217012/ https://www.ncbi.nlm.nih.gov/pubmed/8740374 |