Cargando…
Transfer of Voltage Independence from a Rat Olfactory Channel to the Drosophila Ether-à-go-go K(+) Channel
The S4 segment is an important part of the voltage sensor in voltage-gated ion channels. Cyclic nucleotide-gated channels, which are members of the superfamily of voltage-gated channels, have little inherent sensitivity to voltage despite the presence of an S4 segment. We made chimeras between a vol...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1997
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2217070/ https://www.ncbi.nlm.nih.gov/pubmed/9089438 |
Sumario: | The S4 segment is an important part of the voltage sensor in voltage-gated ion channels. Cyclic nucleotide-gated channels, which are members of the superfamily of voltage-gated channels, have little inherent sensitivity to voltage despite the presence of an S4 segment. We made chimeras between a voltage-independent rat olfactory channel (rolf) and the voltage-dependent ether-à-go-go K(+) channel (eag) to determine the basis of their divergent gating properties. We found that the rolf S4 segment can support a voltage-dependent mechanism of activation in eag, suggesting that rolf has a potentially functional voltage sensor that is silent during gating. In addition, we found that the S3-S4 loop of rolf increases the relative stability of the open conformation of eag, effectively converting eag into a voltage-independent channel. A single charged residue in the loop makes a significant contribution to the relative stabilization of the open state in eag. Our data suggest that cyclic nucleotide-gated channels such as rolf contain a voltage sensor which, in the physiological voltage range, is stabilized in an activated conformation that is permissive for pore opening. |
---|