Cargando…
On the Mechanism by which 4-Aminopyridine Occludes Quinidine Block of the Cardiac K(+) Channel, hKv1.5
4-Aminopyridine (4-AP) binds to potassium channels at a site or sites in the inner mouth of the pore and is thought to prevent channel opening. The return of hKv1.5 off-gating charge upon repolarization is accelerated by 4-AP and it has been suggested that 4-AP blocks slow conformational rearrangeme...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1998
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2217124/ https://www.ncbi.nlm.nih.gov/pubmed/9524137 |
Sumario: | 4-Aminopyridine (4-AP) binds to potassium channels at a site or sites in the inner mouth of the pore and is thought to prevent channel opening. The return of hKv1.5 off-gating charge upon repolarization is accelerated by 4-AP and it has been suggested that 4-AP blocks slow conformational rearrangements during late closed states that are necessary for channel opening. On the other hand, quinidine, an open channel blocker, slows the return or immobilizes off-gating charge only at opening potentials (>−25 mV). The aim of this study was to use quini-dine as a probe of open channels to test the kinetic state of 4-AP-blocked channels. In the presence of 0.2–1 mM 4-AP, quinidine slowed charge return and caused partial charge immobilization, corresponding to an increase in the K (d) of ∼20-fold. Peak off-gating currents were reduced and decay was slowed ∼2- to 2.5-fold at potentials negative to the threshold of channel activation and during depolarizations shorter than normally required for channel activation. This demonstrated access of quinidine to 4-AP-blocked channels, a lack of competition between the two drugs, and implied allosteric modulation of the quinidine binding site by 4-AP resident within the channel. Single channel recordings also showed that quinidine could modulate the 4-AP-induced closure of the channels, with the result that frequent channel reopenings were observed when both drugs were present. We propose that 4-AP-blocked channels exist in a partially open, nonconducting state that allows access to quinidine, even at more negative potentials and during shorter depolarizations than those required for channel activation. |
---|